Answer: 4.77m/s
Explanation:
According to the law of conservation of momentum which states that the sum total of momentum of bodies before collision is equal to the sum of their momentum after collision. Note that the two bodies will move at a common velocity after colliding.
Let m1 and m2 be the mass of the first and second railroad cars
u1 and u2 be the velocities of the railroad cars
v be the common velocity
Using the formula
m1u1 + m2u2 = (m1 +m2)
m1 = 1.20×10⁴kg
m2 = 1.20×10⁴kg (body of same mass)
u1 = 7.70m/s
u2 = 1.84m/s
v = ?
(1.20×10⁴×7.7) + (1.20×10⁴×1.84) = (1.20×10⁴ + 1.20× 10⁴)v
9.24×10⁴ + 2.21×10⁴ = 2.4×10⁴v
11.45×10⁴ = 2.4×10⁴v
v = 11.45×10⁴/2.4×10⁴
v = 4.77m/s
The velocity of the cars after collision will be 4.77m/s
Did you try converting your equation into Kelvin scale form?
Answer:
In the case of an electric bulb, the electrical energy is converted to light and heat. The amount of electrical energy put into a bulb = the amount of light energy (desirable form) plus the heat energy that comes out of the bulb (undesirable form).
Explanation:
sana nakatulong)):
Answer:
d. energy in an isolated system remains constant.
Explanation:
energy can neither be replaced or destroyed