Answer:
<h2>3 kg </h2>
Explanation:
The mass of an object given it's force and acceleration can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>3 kg</h3>
Hope this helps you
Answer:
Δy = 7.1 cm
Explanation:
The center of mass of a body is defined
= 1 /M ∑
i
Where M is the total mass of the body, m mass of each part and ‘y’ height
Let's apply this equation to our case
We locate the reference system on the shoulders
The height of the arms is at its midpoint
y = -75/2 = 37.5 cm
With arms down
= 1/70 (63 y₀ - 3.5 37.5 - 3.5 37.5)
= 1/70 (63 y)₀ - 7 37.5)
With arms up
’= 1/70 (63 y₀ + 3.5 y + 3.5 y)
’= 1/70 (63y₀ + 7 35.5)
let's subtract the two equations
’ -
= 1/70 2 (7 35.5)
Δy =
’ -
= 2 7 35.5 / 70
ΔY = 7.1 cm
v₀ = initial speed of the object = 8 meter/second
v = final speed of the object = 16 meter/second
t = time taken to increase the speed = 10 seconds
d = distance traveled by the object in the given time duration = ?
using the kinematics equation
d = (v + v₀) t/2
inserting the above values in the above equation
d = (16 + 8) (10)/2
d = 120 meter
Answer:
The magnitude of the force on the wire is 2.68 N.
Explanation:
Given that,
Length of the wire, L = 5 m
Magnetic field, B = 0.37 T
Angle between wire and the magnetic field, 
Current in the wire, I = 2.9 A
We need to find the magnitude of the force on the wire. The magnetic force in the wire is given by :

So, the magnitude of the force on the wire is 2.68 N. Hence, this is the required solution.
Answer:
Mercury is a bad conductor of heat but a fair conductor of electricity
By the way PURE SILVER is the best conductor of electricity
Please Mark as brainliest