By applying the theorem of intersecting secants, the measure of angle XYZ is equal to: A. 35°.
<h3>How to determine angle <XYZ?</h3>
By critically observing the geometric shapes shown in the image attached below, we can deduce that they obey the theorem of intersecting secants.
<h3>What is the theorem of
intersecting secants?</h3>
The theorem of intersecting secants states that when two (2) lines intersect outside a circle, the measure of the angle formed by these lines is equal to one-half (½) of the difference of the two (2) arcs it intercepts.
By applying the theorem of intersecting secants, angle XYZ will be given by this formula:
<XYZ = ½ × (m<WZ - m<XZ)
Substituting the given parameters into the formula, we have;
<XYZ = ½ × (175 - 105)
<XYZ = ½ × 70
<XYZ = 35°.
By applying the theorem of intersecting secants, we can infer and logically deduce that the measure of angle XYZ is equal to 35°.
Read more on intersecting secants here: brainly.com/question/1626547
#SPJ1
The answer would be A 4.2x3.7
Answer:
well I mean I already am gay well I'm really lesbian so take that!
For a geometric sequence or geometric series, the common ratio is the ratio of a term to the previous term. This ratio is usually indicated by the variable r. Example: The geometric series 3, 6, 12, 24, 48, . . . has common ratio r = 2.
Answer:
Quadrant III
Step-by-step explanation: