Ethylene- C2H4 = 85.7% Carbon and 14.3% Hydrogen
Find the atomic masses for each element and multiply it by the number of atoms in the compound, then add.
C- 12.0 * 2= 24.0
H- 1.00 * 4= 4.00
-----------------------
28.0
Take the masses for each element and divide it by the total mass. Then change the answer to get the percent.
C 24.0 / 28.0= .857 = 85.7%
H 4.00 / 28.0= .143 = 14.3%
<h3>
Ethylene is 85.7% Carbon and 14.3% Hydrogen </h3>
½H2(g) + ½I2(g) → HI(g) ΔH = +6.2 kcal/mol
or...
½H2(g) + ½I2(g) + 6,2kcal/mole → HI(g)
________
21.0 kcal/mole + C(s) + 2S(s) → CS2(l)
or...
C(s) + 2S(s) → CS2(l) ΔH = +2,1 kcal/mole
_________
ΔH > 0 ----------->>> ENDOTHERMIC REACTIONS
Answer:
P=atm

Explanation:
The problem give you the Van Der Waals equation:

First we are going to solve for P:


Then you should know all the units of each term of the equation, that is:







where atm=atmosphere, L=litters, K=kelvin
Now, you should replace the units in the equation for each value:

Then you should multiply and eliminate the same units which they are dividing each other (Please see the photo below), so you have:

Then operate the fraction subtraction:
P=

And finally you can find the answer:
P=atm
Now solving for b:




Replacing units:

Multiplying and dividing units,(please see the second photo below), we have:



Answer:
There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids)
Explanation:
There are four major classes of biological macromolecules (carbohydrates, lipids, proteins, and nucleic acids), and each is an important component of the cell and performs a wide array of functions. ... Biological macromolecules are organic, meaning that they contain carbon.