Answer:
Moment=Force x Pivot
Explanation:
A moment is the turning effect of a force. Moments act about a point in a clockwise or anticlockwise direction.
Law of moments:
When an object is balanced (in equilibrium) the sum of the clockwise moments is equal to the sum of the anticlockwise moments.
How to calculate moments:
Moment=Force x Pivot
Answer:
1.33 Å
Explanation:
Given that the edge length , a of the KCl which forms the FCC lattice = 6.28 Å
Also,
For the FCC lattice in which the anion-cation contact along the cell edge , the ratio of the radius of the cation to that of anion is 0.731.
Thus,
.................1
Also, the sum of the radius of the cation and the anion in FCC is equal to half of the edge length.
Thus,
...................2
Given that:

To find,

Using 1 and 2 , we get:

<u>Size of the potassium ion = 1.33 Å</u>
Answer:
sugar and oxygen
Explanation:
In photosynthesis, solar energy is harvested as chemical energy in a process that converts water and carbon dioxide to glucose. Oxygen is released as a byproduct.
It is codominant inheritance because, if the placement of the A and B molecules on each cell is controlled by the proteins that are coded by different versions of the same gene, then <span>IA and IB </span><span>are codominant but both are dominant to I<span>o</span>. If a person receives an <span>IA </span>allele and a <span>IB</span> allele, their blood type is type AB, in which characteristics of both A and B antigens are expressed.
</span>
Answer:
1. Hydrogen Iodide
2. 6 molecules of Hydrogen Iodide
3. Iodine is the limiting reagent
Explanation:
The image of the illustration in the question has been attached:
1. The illustration represents a mixture of hydrogen ( light blue ) and iodine ( purple )
H₂ + I₂ ---> 2HI
This forms hydrogen iodide.
2. In the given illustration, 6 product molecules of Hydrogen Iodide. This is indicated in the box on the right side of the illustration.
3. The limiting reagent is the reactant that determines how much of the products are made. It is the substance that is totally consumed when the chemical reaction is completed. In the box on the right side of the illustration, you will see that hydrogen which is indicated by blue is in excess. The limiting reagent is the one that is completely consumed which is the iodine.