for it to be balanced in this case would be " <em>4</em> C6H6 + <em>6</em> CI2 = <em>3</em> C6H5CI + <em>9</em> HCI" therefore it's be a <u>Double Replacement</u>
If you start with 40.0 grams of the element at noon, 10.0 grams
radioactive element will be left at 2 p.m. The correct answer between
all the choices given is the second choice or letter B. I am hoping that this
answer has satisfied your query and it will be able to help you in your
endeavor, and if you would like, feel free to ask another question.
%yield = 88.5%
<h3>Further explanation</h3>
Given
Reaction
Cu(s) + 2 AgNO₃(aq) → Cu(NO₃)₂(aq) + 2Ag(s)
Required
The percent yield
Solution
mol AgNO₃(MW=169,87 g/mol) :
= mass : MW
= 127 : 169.87
= 0.748
mol Ag from equation :
= 2/2 x mol AgNO₃
= 2/2 x 0.748
= 0.748
Mass Ag (theoretical) :
= mol x Ar Ag
= 0.748 x 108
= 80.784
% yield = (actual/theoretical) x 100%
%yield = 71.5/80.784 x 100%
<em>%yield = 88.5%</em>
Ice starts to melt and turns into water as it melts
<span>A solution with a pH of 4 has ten times the concentration of H</span>⁺<span> present compared to a solution with a pH of 5.
</span>pH <span>is a numeric scale for the acidity or basicity of an aqueous solution. It is the negative of the base 10 logarithm of the molar concentration of hydrogen ions.
</span>[H⁺] = 10∧-pH.
pH = 4 → [H⁺]₁ = 10⁻⁴ M = 0,0001 M.
pH = 5 → [H⁺]₂ = 10⁻⁵ M = 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 0,0001 M / 0,00001 M.
[H⁺]₁ / [H⁺]₂ = 10.