Answer:1:En química, el número másico o número de masa es la suma del número de protones y el número de neutrones del núcleo de un átomo. Se simboliza con la letra A (el uso de esta letra proviene de alemán Atomgewicht, que quiere decir peso atómico, aunque sean conceptos distintos que no deben confundirse).
2:
The number of moles of argon that must be released in order to drop.
Solution:
Initial Temperature = 25°c = 298 K
Final Temperature =125 °c = 398 K
Initial Moles (n1) = 0.40 mole
Now, Using the ideal gas law,
n1T1 = n2T2
0.400×298 = n2 × 398
n2 = 0.299 mol
Moles of Argon released
= 0.400-0.299
= 0.100 mol.
Pressure and force are related. That is using the physical equations if you know the other, you can calculate one using pressure = force/area. This pressure can be reported in pounds per square inch, psi, or Newtons per square meter N/m2. Kinetic energy causes air molecules to move faster. They hit the walls of the container more often and with greater force. The increased pressure inside the can may exceed the strength of the can and cause an explosion.
Learn more about The temperature here:-brainly.com/question/24746268
#SPJ1
Answer:
128.4 m
Explanation:
3.604m + 104.29m + 3.1m + 17.41m
Add all the values
= 128.404 m
The significant figure rule for addition is for the sum to have the same number of decimal places as the value with the least number of decimal places. In the addition sentence 3.604m + 104.29m + 3.1m + 17.41m, the value with the least number of decimal places is 3.1, which has 1 decimal place. Therefore, we round our sum so that it also has 1 decimal place.
128.404 m
= 128.4 m
I hope this helps!
Answer:
Option D. KBr < KCl < NaCl
Explanation:
We'll begin by calculating the number of mole of each sample.
This can be obtained as follow:
For NaCl:
Mass = 1 g
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mole of NaCl =?
Mole = mass /Molar mass
Mole of NaCl = 1/58.5
Mole of NaCl = 0.0171 mole
For Kbr:
Mass = 1 g
Molar mass of KBr = 39 + 80 = 119 g/mol
Mole of KBr =?
Mole = mass /Molar mass
Mole of KBr = 1/119
Mole of KBr = 0.0084 mole
For KCl:
Mass = 1 g
Molar mass of KCl = 39 + 35.5 = 74.5 g/mol
Mole of KCl =?
Mole = mass /Molar mass
Mole of KCl = 1/74.5
Mole of KCl = 0.0134 mole
Summary
Sample >>>>>>>> Number of mole
NaCl >>>>>>>>>> 0.0171
KBr >>>>>>>>>>> 0.0084
KCl >>>>>>>>>>> 0.0134
Arranging the number of mole of the sampl in increasing order, we have:
KBr < KCl < NaCl