Answer:
It is an example of coupling an exogenic reaction to an endogenic reaction.
Explanation:
The endergonic reaction is typically being pushed by coupling it to strongly exergonic reaction. This is in most cases via shared intermediates. Most chemical reactions are endergonic in nature. In other word, the are not spontaneous (i.e ΔG>0). Energy must also be applied externally to initiate the reactions. The reactions can also be coupled to exergonic reactions (with ΔG<0) to initiate them through a process known as share intermediate. Because Gibbs Energy can be summed up (i.e is a state function), the combined ΔG of the coupled reaction will be thermodynamically favorable. The decomposition of calcium carbonate is a typical example.
Answer:
Oxygen is a colorless, odorless, tasteless gas. It changes from a gas to a liquid at a temperature of -182.96°C (-297.33°F). The liquid formed has a slightly bluish color to it. Liquid oxygen can then be solidified or frozen at a temperature of -218.4°C (-361.2°F).
Answer:
C
Explanation:
Cyclohexane is a cycloalkane with the molecular formula C₆H₁₂. Cyclohexane is non-polar.
On the other hand ammonia is a very dangerous chemical which has a pungent smell and effect the eyes of the user. Thus it kept always in the fume exhaust hood for storing and dispensing function.
The pH of ammonia buffer contains ammonium hydroxide (NH₄OH) and a salt of ammonia with a strong acid like (HCl) which produces, ammonium chloride (NH₄Cl) mixture. The evaporation rate of ammonia is so high at room temperature thus on opening of the buffer solution the ammonia get evaporated very fast and the concentration of ammonia decreases which affect the pH of the buffer solution.
Thus the reason to put ammonia buffer in fume hood is explained.