The expected speed is v = 85.5 km/h
v = 85.5 km/h = (85.5 km/h)*(0.2778 (m/s)/(km/h)) = 23.75 m/s
If there is an uncertainty of 2 meters in measuring the position, then within a 1-second time interval:
The lower measurement for the speed is v₁ = 21.75 m/s,
The upper measurement for the speed is v₂ = 25.75 m/s.
The range of variation is
Δv = v₂ - v₁ = 4 m/s
The uncertainty in measuring the speed is
Δv/v = 4/23.75 = 0.1684 = 16.84%
Answer: 16.8%
Answer:
During chemical reactions, matter is neither
created nor destroyed; it just changes form.
Explanation:
The answer is A
According to research I have done, pure solids and liquids are not included in the equilibrium constant expression. If the concentration of a reactant in aqueous solution is increased, the position of equilibrium will move in the direction which minimises the effect of this increase in concentration, by using the added component up, to decrese it's concentration again.
The answer is 4.41x10^1 m.
Explanation:
You would use this formula to calculate it
λ = C/f
Where,
λ (Lambda) = Wavelength in meters
c = Speed of Light (299,792,458 m/s)
f = Frequency
So we have the frequency, 68 Hz, and we have the speed of light. Now we put it into the equation and it will look like this:
λ= (299,792,458 m/s) / (68 Hz)
λ= 4.41x10^1