Because if you follow a fitness plan you can get done a lot of stuff that you can't without a plan so like you make a plan of what you are going to do instead of just doing random fitness stuff
The unknown of this problem is the experimental percent of water in the compound in order to remove the water of hydrogen, given the following:
Mass of crucible, cover and contents before heating 23.54 g
Mass of empty crucible and cover 18.82 g
Mass of crucible, cover, and contents after heating to constant mass 20.94 g
In order to get the answer, determine the following:
Mass of hydrated salt used = 23.54 g – 18.82 g = 4.72 g
Mass of dehydrated salt after heating = 20.94 g – 18.82 g = 2.12 g
Mass of water liberated from salt = 4.72 g – 2.12 g = 2.60 g
Then solve the percent of water in the hydrated salt by:
% water = (mass of water / mass of hydrated salt) x 100
% water = 2.60 g / 4.72 g x 100
% water = 55.08 % in the compound
To answer this question, we will use the general gas law which states that:
PV = nRT where:
P is the pressure of the gas = <span>10130.0 kPa
</span>V is the volume of the gas = 50 liters
n is the number of moles that we want to calculate
R is the gas constant = <span>8.314 L∙kPa/K∙mol
T is the temperature = 300+273 = 573 degree kelvin
Substitute with the givens in the equation to get the number of moles as follows:
</span><span>10130 * 50 = n * 8.314 * 573
506500 = 4763.922 n
n = </span>506500 / 4763.922
n = 106.3199 moles
<u>Answer:</u> The moles of oxygen and carbon dioxide in air is and respectively
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
Given mass of atmosphere =
Average molar mass of atmosphere = 28.96 g/mol
Putting values in above equation, we get:
We know that:
Percent of oxygen in air = 21 %
Percent of carbon dioxide in air = 0.0415 %
Moles of oxygen in air =
Moles of carbon dioxide in air =
Hence, the moles of oxygen and carbon dioxide in air is and respectively