To determine whether a compound is polar or nonpolar you have to take into account:
1) formation of dipoles due to the difference in electronegativities of the atoms
2) shape of the molecule to conclude whether there is a net dipole momentum.
You already, likely, know that the electronegativities of H and O are significatively different, being O more electronegative thatn H. So, you can conclude easilty that the electrons are atracted more by O than by H, thus creating two dipoles H→O
Regarding the shape, it may appear that the molecule is symmetrical, which would lead to the cancellation of the two dipoles. But that is not the true. The H2O2 is not symmetrical.
The lewis structure just show this shape
** **
H - O - O - H
** **
which is what may induce to think that the molecule is symmetrical, leading to the misconception that it is nonpolar.
But in a three dimensional arrangement you could see that the hydrogens are placed in non symmetrical positions, which leads to the formation of a net dipole momentum, and thus to a polar molecule.
The fact that H2O2 is a polar compound is the reason why it can be mixed with water and the H2O2 that you buy in the pharmacy is normally a solution in water.
So, the hydrogen peroxide is polar because the hydrogens are not placed symmetrically in the molecule, which result in a net dipole momentum.
Answer:
The size of an isolated atom can't be measured because we can't determine the location of the electrons that surround the nucleus. We can estimate the size of an atom, however, by assuming that the radius of an atom is half the distance between adjacent atoms in a solid. This technique is best suited to elements that are metals, which form solids composed of extended planes of atoms of that element. The results of these measurements are therefore often known as metallic radii.
.Explanation:
Answer:
The mass percentage of carbon can be found easily using the molar mass of C6H12O6, 180.1559 g/mol. We need to find the mass of the glucose produced, so we multiply the number of moles of glucose by its molar mass. C6H12O6 = CO2 + C3H6O3 + CH3OCH3 Take fructose for example. Compound.
Explanation: I looked it up
Answer:
Size of the nucleus of an atom is very small as compared to the size of the atom.
According to Rutherford gold foil experiment, nucleus is very small in size as compared to the size of the atom as a whole. Nucleus is very hard, dense and positively charged which consists of protons and neutrons.
Explanation: