The volume measured using such a cylinder will be reported to the nearest 10th mL.
<h3>Cylinder graduation</h3>
10 mL graduated cylinders are always read to the nearest two decimal places.
100 mL graduated cylinders are always read to the nearest 1 decimal place. The nearest 1 decimal place is the same thing as the nearest 10th.
Thus, a reading made using a 100mL increment graduated cylinder would be reported to the nearest 10th mL.
More on cylinder graduation can be found here: brainly.com/question/14427988
#SPJ1
The answer is 62.00 g/mol.
Solution:
Knowing that the freezing point of water is 0°C, temperature change Δt is
Δt = 0C - (-1.23°C) = 1.23°C
Since the van 't Hoff factor i is essentially 1 for non-electrolytes dissolved in water, we calculate for the number of moles x of the compound dissolved from the equation
Δt = i Kf m
1.23°C = (1) (1.86°C kg mol-1) (x / 0.105 kg)
x = 0.069435 mol
Therefore, the molar mass of the solute is
molar mass = 4.305g / 0.069435mol = 62.00 g/mol
Answer;
C. unchanged rock and mineral fragments
Explanation;
A large number of landforms and features found in desert environments are formed as the result of weathering. Weathering is defined as the breakdown and deposition of rocks by weather acting in situ
The two main types of weathering which occur in deserts are Mechanical weathering, which is the disintegration of a rock by mechanical forces that do not change the rock's chemical composition and Chemical weathering, which is the decomposition of a rock by the alteration of its chemical composition.
By contrast much of the weathered debris in deserts has resulted from mechanical weathering. Chemical weathering, however, is not completely absent in deserts. Over long time spans,clays and thin soils do form.
I would say is because of the Boron from O?