Answer: Thus there are 88.4 g of calcium bromide.
Explanation:
According to avogadro's law, 1 mole of every substance weighs equal to the molecular mass and contains avogadro's number
of particles.
Molar mass of = 40.1 (1)+ 2(79.9) = 199.9
To calculate the moles, we use the equation:



Thus there are 88.4 g of calcium bromide.
Answer:

Explanation:
It often helps to write the heat as if it were a reactant or a product in the thermochemical equation.
Then you can consider it to be 11018 "moles" of "kJ"
We will need a chemical equation with masses and molar masses, so, let's gather all the information in one place.
M_r: 32.00
2C₈H₁₈ + 25O₂ ⟶ 16CO₂ + 8H₂O + 11 018 kJ
n/mol: 7280
1. Moles of O₂
The molar ratio is 25 mol O₂:11 018 kJ

2. Mass of O₂

Answer:
It favors the forward reaction.
Explanation:
According to Le Chatelier's Principle, when a system at equilibrium suffers a perturbation, the system will react in order to counteract the effect of such perturbation.
If more reactant is added, the system will try to decrease its concentration. It will do so by favoring the forward reaction, decreasing the concentration of the reactant and increasing the concentration of the products, in order to re-establish the equilibrium.