A concentrated acid<span> has a relatively large amount of solute dissolved in the solvent. A </span>dilute acid<span> has a relatively smaller amount of solute dissolved in the solvent. In a solution of a strong </span>acid<span> there would be solvated ions present, but no associated molecules present.</span>
Explanation:
34.2g of C12H22O11 is dissolved in 180g of H20.
Molar mass of sucrose = 342g/mol
Moles of sucrose = 342 / 34.2 = 10 mol.
Molar mass of water = 18g/mol
Moles of water = 180 / 18 = 10 mol.
For hydrogen atoms, there are 22 * 10 in sucrose and 2 * 10 in water, which gives a total of 240.
For oxygen atoms, there are 11 * 10 in sucrose and 1 * 10 in water, which gives a total of 120.
Answer:
That's simple it's the caca of 54 32 x (5) b ÷ 5683jvl done so your answer is 0
Answer:
1.07×10²¹ molecules are needed to sound the alarm
Explanation:
Let's convert the mass of CO to moles, to determine the amount of molecules.
0.05 g . 1 mol / 28 g = 1.78×10⁻³ moles
Now we can determine the number of molecules with the NA
1 mol has 6.02×10²³ molecules
1.78×10⁻³ moles may have (1.78×10⁻³ . 6.02×10²³) / 1 = 1.07×10²¹ molecules
Given parameters:
Heat of fusion of water = 334j/g
Mass of ice = 45g
Temperature of ice = 0.0°c
Unknown:
Amount of heat needed to melt = ?
Solution:
This is simply a phase change and a latent heat is required in this process.
To solve this problem; use the mathematical expression below;
H = mL
where m is the mass
L is the heat of fusion of water;
H = 45 x 334 = 15030J