Answer:
²³⁸₉₃Np → Pu₉₄²³⁸ + ⁰₋₁e
Explanation:
²³⁸₉₃Np → Pu₉₄²³⁸ + ⁰₋₁e
Beta radiations:
Beta radiations are result from the beta decay in which electron is ejected. The neutron inside of the nucleus converted into the proton an thus emit the electron which is called β particle.
The mass of beta particle is smaller than the alpha particles.
They can travel in air in few meter distance.
These radiations can penetrate into the human skin.
The sheet of aluminium is used to block the beta radiation
⁴₆C → ¹⁴₇N + ⁰₋₁e
The beta radiations are emitted in this reaction. The one electron is ejected and neutron is converted into proton.
Given 3.72 g of P and 21.28g of Cl, converting these to moles: ( 3.72 g P)(mol P/30.97 g P) = 0.12 mol P (21.28 g Cl)(mol Cl/35.45 g Cl) = 0.60 mol Cl P:Cl = 0.12/0.60, therefore P: Cl =1/5 Therefore, PCl5 hope it helps
Answer: 289.1 torr ..........
Organic chemical compounds as recommended by the (IUPAC)
x= the coefficients in front of the substance in the balanced chemical equation
[H+]= the concentration of hydrogen ions
[A-]= the concentration of the other ion that broke off from the H+
[HA]= the un-disassociated acid concentration
The higher the Ka value, the greater amount of disassociation of the reactants into products. As for acids, they will break down to form H+ ions. The more the H+ ions, the stronger acidity of the solution. Thus since A has the highest Ka value, that represents the strongest acid.
You can determine the Ka value from a number of ways. If equilibrium concentrations are given of a certain acid solution, you can find the proportion of the concentration of ions to the concentration of the remaining HA molecules, using the equation above. Also, pH and KpH can be used in a number of ways. This gets more complicated and depends on the situation, and requires more advanced equations.
Hope this helped a little, its obviously not my best work