Answer:
See explanation
Explanation:
An intrinsic property is a property that is internal, that is, it characterizes the substance under study. The possession of an intrinsic property depends on the nature of the substance. An intrinsic property does not depend on amount of substance but on the nature of the substance.
Examples of intrinsic properties include; Density. Solubility, Melting Point, Freezing Point, Boiling Point, Conductivity etc.
Intrinsic properties really represent the matter that is being studied. For instance, the boiling point of water will always be 100°c. No other liquid can boil exactly at that temperature. Hence, this intrinsic property can always be used to identify an unknown liquid as water.
The students were right, studying intrinsic properties accurately represent the matter that is being studied.
Answer:

Explanation:
The equation for mass is:

We plug in the given values into the equation:


H2O is the Bronsted-Lowry base because it accepts the hydrogen ion to become H3O after the reaction is complete.
Answer:
The molar solubility of YF₃ is 4.23 × 10⁻⁶ M.
Explanation:
In order to calculate the molar solubility of YF₃ we will use an ICE chart. We identify 3 stages: Initial, Change and Equilibrium and we complete each row with the concentration of change of concentration. Let's consider the solubilization of YF₃.
YF₃(s) ⇄ Y³⁺(aq) + 3 F⁻(aq)
I 0 0
C +S +3S
E S 3S
The solubility product (Ksp) is:
Ksp = [Y³⁺].[F⁻]³= S . (3S)³ = 27 S⁴
![S=\sqrt[4]{Ksp/27} =\sqrt[4]{8.62 \times 10^{-21} /27}=4.23 \times 10^{-6}M](https://tex.z-dn.net/?f=S%3D%5Csqrt%5B4%5D%7BKsp%2F27%7D%20%3D%5Csqrt%5B4%5D%7B8.62%20%5Ctimes%2010%5E%7B-21%7D%20%20%2F27%7D%3D4.23%20%5Ctimes%2010%5E%7B-6%7DM)