Answer:
3–ethyl–4–methylhexane.
Explanation:
To name the above compound, do the following:
1. Determine the functional group of the compound.
2. Locate the longest continuous carbon chain. This gives the parent name of the compound.
3. Identify the substituent group attached to the compound.
4. Give the substituent the lowest possible count.
5. Combine the above to name the compound.
Now, we shall name the compound given in the question above as follow:
1. The compound contains only single bond. Therefore, the compound belong to the alkane family.
2. The longest continuous carbon chain is 6 i.e hexane.
3. The substituent group attached are:
i. Methyl, CH3.
ii. Ethyl, CH2CH3.
4. we shall name the substituents alphabetically i.e ethly will come before methyl. Therefore,
Ethyl is located at carbon 3.
Methy is located at carbon 4.
5. Therefore, the name of the compound is:
3–ethyl–4–methylhexane.
I believe Erosion is the process most likely responsible for the removal of the missing parts of the rock layers. Erosion involves the physical action of surface processes that removes soil, rock, or dissolved material from one location on the Earth's crust, then moved away to another location.
<u>Answer:</u> The atomic mass of these species is different and atomic number remains same.
<u>Explanation:</u>
Isotopes are the chemical species of the same element having different number of neutrons.
- Atomic number is equal to the number of protons or electrons present in that element.
Atomic Number = Number of electrons = Number of protons
- Atomic mass is defined as the sum of number of protons and neutrons contained in an atom.
Atomic Mass = Number of protons + Number of neutrons
For isotopes, as the number of neutrons differ, the atomic mass also differs.
For Example: Carbon has 3 naturally occurring isotopes:
. The atomic number remains the same but atomic mass differs.
Hence, for isotopes, the atomic mass of these species is different and atomic number remains same.
Answer:
In neutralization reaction water and a salt is produced.
2 C₁₇H₁₉NO₃ + H₂SO₄ → Product
Moles of H₂SO₄ = M x V(liters) = 0.0116 x 8.91/1000 = 1.033 x 10⁻⁴ mole
moles of morphine = 2 x moles of H₂SO₄ = 2.066 x 10⁻⁴
Mass of morphine = moles x molar mass of morphine = 2.066 x 10⁻⁴ x 285.34
= 0.059 g
percent morphine =

=

= 8.6 %