Answer:
Q = 63.75J
Explanation:
Mass = 2.5g
Initial temperature (T1) = 25°C
Final temperature (T2) = 50°C
Specific heat capacity of Mg = 1.020J/g°C
Heat energy = ?
Heat Energy (Q) = mc∇T
Q = heat energy
M = mass of substance
C = specific heat capacity of substance
∇T = change in temperature = T2 - T1
Q = mc∇T
Q = mc(T2 - T1)
Q = 2.5 × 1.020 × (50 - 25)
Q = 2.55 × 25
Q = 63.75J
The heat energy required to raise magnesium metal from 25°C to 50°C is 63.75J
Electrons<span> are NOT in circular orbits around nucleus. -The</span>atomic<span> orbital </span>describes<span> the probable location of the electrion </span>Quantum Mechanical Model of the Atom<span> Page 3 There are different kinds of </span>atomic orbitals<span> that differ in the amount of energy and shapes (where the </span>electron<span> probably is).
</span>
Answer:
Calcite
Explanation:
The chart shows that calcite is higher than gypsum, but is lower than apatite. Therefore meaning that it can scratch gypsum But not able to the same to apatite.
Compounds of hydrogen exhibit a relatively large kinetic isotope effect.
The phenomenon known as the kinetic isotope effect (KIE) is brought on by the variable reaction speeds that are displayed by isotopically substituted compounds. When it comes to studying reaction kinetics, mechanisms, and solvent effects, isotope effects like KIEs are invaluable tools in both physical and biological sciences.
The phenomenon known as the kinetic isotope effect (KIE) is brought on by the variable reaction speeds that are displayed by isotopically substituted compounds. When it comes to studying reaction kinetics, mechanisms, and solvent effects, isotope effects like KIEs are invaluable tools in both physical and biological sciences. The replacement of hydrogen with deuterium is a highly frequent isotope substitution. The ratio kH/kD, which describes this as a "deuterium effect," is used to measure it. Due to the proportion, significant effects are observed.
Learn more about kinetic isotope effect here:
brainly.com/question/20388488
#SPJ4