Answer:
All these is caused by the repulsion force.
Explanation:
The electroscope produces a series of electric charges that produce a repulsion force when is putted in contact with a electric charged object.
As the physics law mentions, two different forces are repealed, the electrocospe is charged negatively and the object positively, causing a repulsion force that avoids that both objects touch the other.
Answer:
0 N
Explanation:
Applying,
F = qvBsin∅................. Equation 1
Where F = Force on the charge, q = charge, v = Velocity, B = magnetic charge, ∅ = angle between the velocity and the magnetic field.
From the question,
Given: q = 4.88×10⁻⁶ C, v = 265 m/s, B = 0.0579 T, ∅ = 0°
Substitute these values into equation 1
F = ( 4.88×10⁻⁶)(265)(0.0579)(sin0)
Since sin0° = 0,
Therefore,
F = 0 N
Answer:
0
Explanation:
According to Newton's second law, the net force is equal to the mass times the acceleration. Since the car is not accelerating, the net force is 0.
They don't need gas because satellites rotate around the world using our planet's gravitational force as centripetal force. That as well as since there is no air in space, it doesn't have to work against air resistance. This way it doesn't lose energy by going around and around the Earth.
Hope this helps, have a BLESSED day! :-)
Answer:
it must be helical motion in which the charge particle will move uniformly along z axis and simultaneously it will move in circular path in xy plane.
Explanation:
Magnetic field is along z axis while velocity is in x-z plane
so we will have

so here we can say

so we will have

so here the net force on the charge is perpendicular to its x directional velocity along - Y direction
So due to this component of motion it will move along a circle while other component of the motion will remain uniform always
So here it is combination of two parts
1) Uniform circular motion
2) Uniform motion
So we can say that it must be helical motion in which the charge particle will move uniformly along z axis and simultaneously it will move in circular path in xy plane.