The answer is A: can change
Answer:
Explanation:
fundamental frequency, f = 250 Hz
Let T be the tension in the string and length of the string is l ans m be the mass of the string initially.
the formula for the frequency is given by
.... (1)
Now the length is doubled ans the tension is four times but the mass remains same.
let the frequency is f'
.... (2)
Divide equation (2) by equation (1)
f' = √2 x f
f' = 1.414 x 250
f' = 353.5 Hz
The velocity of the object s calculated as 22.1 m/s.
<h3>What is the speed of the object?</h3>
Given that we can write that;
v^2 = u^2 + 2gh
Now u = 0 m/s because the object was dropped from a height
v^2 = 2gh
v = √2 * 9.8 * 25
v = 22.1 m/s
Learn more about velocity:brainly.com/question/18084516
#SPJ1
Answer:
360 N
Explanation:
m = 30kg u = 2 m/s a = -2m/s/s
Since the object has an initial velocity of 2 m/s and acceleration of -2 m/s/s
the object will come to rest in 1 second but the force applied in that one second can be calculated by:
F = ma
F = 30 * -2
F = -60 N (the negative sign tells us that the force is acting downwards)
Now, calculating the force applied on the box due to gravity
letting g = -10m/s/s
F = ma
F = 30 * -10
F = -300 N (the negative sign tells us that the force is acting downwards)
Now, calculating the total downward force:
-300 + (-60) = -360 N
<em></em>
<em>Hence, a downward force of 360 N is being applied on the box and since the box did not disconnect from the rope, the rope applied the same amount of force in the opposite direction</em>
Therefore tension on the force = <u>360 N</u>
Answer:
a) -2.038 m/s²
b) 40.33 mph
c) 312.5 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration

Acceleration of the boat is -2.083 m/s² if the boat will stop at 150 m.

Speed of the boat by when it will hit the dock is 18.03 m/s
Converting to mph



Speed of the boat by when it will hit the dock is 40.33 mph

The distance at which the boat will have to start decelerating is 312.5 m