She is

kilometers away from her starting point
Answer:
kinetic energy
Explanation:
a certain amount of energy is transferred by the kick. The ball gains an equal amount of energy, mostly in the form of kinetic energy.
Answer:
B. Convection
D. Conduction
Explanation:
Conduction and convection are the two most prominent processes that helps transfer energy outward to the earth's crust.
- Energy within the core is a function of the radioactive decay and frictional heating.
- Also, heat that accreted during the formation of the earth is a significant source of internal energy.
- The heat is conducted away by the process of convection. This is possible due to temperature differences between different parts of the earth
- Conduction is made made possible due to the metallic bodies in the core and other part of the inner earth.
Answer:
The weight lifter would not get past this sticking point.
Explanation:
Generally torque applied on the weight is mathematically represented as
T = F z
To obtain Elbow torque we substitute 4000 N for F (the force ) and 2cm
for z the perpendicular distance
So Elbow Torque is 

To obtain the torque required we substitute 300 N for F and 30cm 
So the Required Torque is 

Now since
it mean that the weight lifter would not get past this sticking point
We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is