1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lesya [120]
3 years ago
6

The bending of a wave as it moves from one medium to another is called

Physics
1 answer:
Allisa [31]3 years ago
7 0
Refraction is the bending of a wave as it passes at an angle from on medium to another
You might be interested in
A wave is traveling through a medium ad it travels it displaces particles of matter in the same direction as the wave is traveli
Tamiku [17]
I think it's longitudinal wave because the particles move parallel to the direction that the wave is traveling. 
7 0
4 years ago
Read 2 more answers
A block of unknown mass is attached to a spring with a spring constant of 7.00 N/m 2 and undergoes simple harmonic motion with a
KatRina [158]

Answers:

a) 0.80 kg

b) 2.12 s

c) 1.093 m/s^{2}

Explanation:

We have the following data:

k=7 N/m is the spring constant

A=12.5 cm \frac{1 m}{100 cm}=0.125 m is the amplitude of oscillation

V=32 cm/s=0.32 m/s is the velocity of the block when x=\frac{A}{2}=0.0625 m

Now let's begin with the answers:

<h3>a) Mass of the block</h3>

We can solve this by the conservation of energy principle:

U_{o}+K_{o}=U_{f}+K_{f} (1)

Where:

U_{o}=k\frac{A^{2}}{2} is the initial potential energy

K_{o}=0  is the initial kinetic energy

U_{f}=k\frac{x^{2}}{2} is the final potential energy

K_{f}=\frac{1}{2} m V^{2} is the final kinetic energy

Then:

k\frac{A^{2}}{2}=k\frac{x^{2}}{2}+\frac{1}{2} m V^{2} (2)

Isolating m:

m=\frac{k(A^{2}-x^{2})}{V^{2}} (3)

m=\frac{7 N/m((0.125 m)^{2}-(0.0625 m)^{2})}{(0.32 m/s)^{2}} (4)

m=0.80 kg (5)

<h3>b) Period</h3>

The period T is given by:

T=2 \pi \sqrt{\frac{m}{k}} (6)

Substituting (5) in (6):

T=2 \pi \sqrt{\frac{0.80 kg}{7 N/m}} (7)

T=2.12 s (8)

<h3>c) Maximum acceleration</h3>

The maximum acceleration a_{max} is when the force is maximum F_{max}, as well :

F_{max}=m.a_{max}=k.x_{max} (9)

Being x_{max}=A

Hence:

m.a_{max}=kA (10)

Finding a_{max}:

a_{max}=\frac{kA}{m} (11)

a_{max}=\frac{(7 N/m)(0.125 m)}{0.80 kg} (12)

Finally:

a_{max}=1.093 m/s^{2}

5 0
3 years ago
Plzzzzz helppppp plzzzzzzzzzzzzzzzzzzzzzzz
Helen [10]

Answer:

A

Explanation:

ap3x

6 0
3 years ago
Read 2 more answers
As one moves farther and farther from the Sun, the distance between adjacent planets is _____.
Alenkinab [10]
As one moves farther and farther from the Sun, the distance between adjacent planets is greater.
4 0
3 years ago
A 10 kg monkey climbs up a massless rope that runs over a frictionless tree limb and back down to a 15 kg package on the ground.
pshichka [43]

Answer:

A. 4,9 m/s2

B. 2,0 m/s2

C. 120 N

Explanation:

In the image, 1 is going to represent the monkey and 2 is going to be the package.  Let a_mín be the minimum acceleration that the monkey should have in the upward direction, so the package is barely lifted. Apply Newton’s second law of motion:

\sum F_y=m_1*a_m_i_n = T-m_1*g

If the package is barely lifted, that means that T=m_2*g; then:

\sum F_y =m_1*a_m_i_n=m_2*g-m_1*g

Solving the equation for a_mín, we have:

a_m_i_n=((m_2-m_1)/m_1)*g = ((15kg-10kg)/10kg)*9,8 m/s^2 =4,9 m/s^2

Once the monkey stops its climb and holds onto the rope, we set the equation of Newton’s second law as it follows:

For the monkey: \sum F_y = m_1*a \rightarrow T-m_1*g=m_1*a

For the package: \sum F_y = m_2*a \rightarrow m_2*g - T = m_2*a

The acceleration a is the same for both monkey and package, but have opposite directions, this means that when the monkey accelerates upwards, the package does it downwards and vice versa. Therefore, the acceleration a on the equation for the package is negative; however, if we invert the signs on the sum of forces, it has the same effect. To be clearer:

For the package: \sum F_y = -m_2*a \rightarrow T-m2*g=-m_2*a \rightarrow m_2*g -T=m_2 *a

We have two unknowns and two equations, so we can proceed. We can match both tensions and have:

m_1*a+m_1*g=m_2*g-m_2*a

Solving a, we have

(m_1+m_2)*a =(m_2 - m1)*g\\\\a=((m_2-m_1)/(m_1+m_2))*g \rightarrow a=((15kg-10kg)/(10kg+15kg))*9,8 m/s^2\\\\a= 2,0 m/s^2

We can then replace this value of a in one for the sums of force and find the tension T:

T = m_1*a+m_1*g \rightarrow T=m_1*(a+g)\\\\T = 10kg*(2,0 m/s^2+9,8 m/s^2) \\\\T = 120 N

5 0
3 years ago
Other questions:
  • The box plots show the summer temperatures, in degrees Fahrenheit, in two cities. Summer Temperatures in City A Summer Temperatu
    5·2 answers
  • What do microwaves have in common with light waves?
    10·2 answers
  • A brass rod 175.00 mm long and 5.00 mm in diameter extends horizontally from a casting at 200°C. The rod is in an air environmen
    5·1 answer
  • At what point on the track does a roller coaster have the greates kinetic energy?
    12·1 answer
  • The flower of the species Rosa verdus can be either green or red. in the species a single gene with two alleles determines flowe
    6·2 answers
  • Speed is the ratio of the distance an object moves to
    15·1 answer
  • The upward normal force exerted by the floor is 710 N on an elevator passenger who weighs 720 N . You may want to review (Pages
    11·1 answer
  • Which color in the rainbow has the shortest wavelength?
    13·1 answer
  • 1. A block with a mass of 5.0 kg is pushed on a frictionless surface by applying a horizontal force of 80.0 N. The block starts
    13·1 answer
  • If a car change the velocity from 36M/S to 28M/S with an acceleration of -2.0 M/S then how much time does it take for the vehicl
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!