Answer:
r = 0m is the Minimum distance from the axis at which the block can remain in place wothout skidding.
Explanation:
From a sum of forces:
where Ff = μ * N and 
N - m*g = 0 So, N = m*g. Replacing everything on the original equation:
(eq2)
Solving for r:

If we analyze eq2 you can conclude that as r grows, the friction has to grow (assuming that ω is constant), so the smallest distance would be 0 and the greatest 1.41m. Beyond that distance, μ has to be greater than 0.83.
Answer:

Explanation:
<u>Accelerated Motion
</u>
When a body changes its speed at a constant rate, i.e. same changes take same times, then it has a constant acceleration. The acceleration can be positive or negative. In the first case, the speed increases, and in the second time, the speed lowers until it eventually stops. The equation for the speed vf at any time t is given by

where a is the acceleration, and vo is the initial speed
.
The train has two different types of motion. It first starts from rest and has a constant acceleration of
for 182 seconds. Then it brakes with a constant acceleration of
until it comes to a stop. We need to find the total distance traveled.
The equation for the distance is

Our data is

Let's compute the first distance X1


Now, we find the speed at the end of the first period of time


That is the speed the train is at the moment it starts to brake. We need to compute the time needed to stop the train, that is, to make vf=0



Computing the second distance


The total distance is



Microwave<span> ovens are so quick and efficient because they channel </span>heat<span> energy directly to the molecules (tiny particles) inside </span>food<span>. </span>Microwaves heat food<span> like the sun heats your face—by radiation. A </span>microwave<span> is much like the electromagnetic waves that zap through the air from TV and radio transmitters</span>
Answer:
(a) W= 44N
(b)W= 31.65 N
Explanation:
Data
T=44 N : Maximum force that the rope can withstand without breaking
Newton's second law:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
(a) We apply the formula (1) at constant speed , then, a=0
W: heaviest fish that can be pulled up vertically
∑F = 0
T-W =0
W = T
W= 44N
(b) We apply the formula (1) , a= 1.26 m/s²
W: heaviest fish that can be pulled up vertically
W= m*g
m= W/g
g= 9.8 m/s² : acceleration due to gravity
∑F = 0
T-W = m*a
T= W+(W/g)*a
44=W*(1+1/9.8)* (1.26 )
44= W* 1.39
W= 44/1.39
W= 31.65 N