Answer:
Explanation:
To get the person Moving you have to overcome the static (means not moving) friction coefficient. U(static)
To get the person going at the same speed you have to overcome the kinetic friction coefficient. U(Kinetic)
Force to get him moving is 198 N. Force = ma = U(static)Mg
combining the 2 equations you get 198N = U(static)* 55kg *9.8m/s^2 Solve for U(static)
Same equation to keep him moving except with the dynamic force and the dynamic U
175N= U(kinetic)*55kg*9.8m/s^2 Solve (U dynamic)
Answer:
I think the answer is B. amount of energy present but I'm not 100% sure
Explanation:
Answer:
hello your question is incomplete attached below is the complete question
answer :
a) I1 = I2
b) J1 > J2
c) E 1 > E2
d) ( vd1 ) > ( vd2 )
Explanation:
a) The currents in the two segments are the same i.e. I1 = I2 and this is because the segments are connected in series
b) Comparing the current densities J1 and J2 in the two segments
note : current density ∝ 1 / area
The area of the second segment is > the area of first segment therefore
J1 > J2
J1 ( current density of first segment )
J2 ( current density of second segment )
c) Comparing the electric field strengths E1 and E2
note : electric field strength ∝ current density
since current density of first segment is > current density of second segment and conductivity of the materials are the same hence
E 1 > E2
d) Comparing the drift speeds Vd1 and Vd2
( vd1 ) > ( vd2 )
this because ; vd ∝ current density