Answer:
The law of conservation of momentum states that the total momentum of interacting objects does not <u>change</u>. This means the total momentum <u>before</u><u> </u>a collision or explosion is equal to the total momentum <u>after</u><u> </u>a collision or explosion.
Answer:
hope this helps i think the answer is C
Well, if you're using the law to work with periods of Earth satellites,
then the most convenient unit is going to be 'hours' for the largest
orbits, or 'minutes' for the LEOs.
But if you're using it to work with periods of planets, asteroids, or
comets, then you'd be working in days or years.
Answer:
6 V
Explanation:
We can solve the problem by using Ohm's law:

where
V is the voltage in the circuit
R is the resistance
I is the current
In this problem, we know the current,
, and the resistance,
, therefore we can find the voltage in the circuit:

Answer:
52.5°C
Explanation:
The final enthalpy is determined from energy balance where initial enthalpy and specific volume are obtained from A-12 for the given pressure and state
mh1 + W = mh2
h2 = h1 + W/m
h1 + Wα1/V1
242.9 kJ/kg + 2.35.0.11049kJ/ 0.35/60kg
=287.4 kJ/kg
From the final enthalpy and pressure the final temperature is obtained A-13 using interpolation
i.e T2 = T1 + T2 -T1/h2 -h1(h2 - h1)
= 50°C + 60 - 50/295.15 - 284.79
(287.4 - 284.79)°C
= 52.5°C