Answer:
Explanation:
The distance travelled in the free fall is H - h
Since the apple originally started from rest we can use v^2 = u^2 + 2 x g x s where v is the final velocity, g the accln due to gravity and s the distance travelled and u is the initial velocity = 0
So the velocity just before it enters the grass is sq rt [2 x g x (H - h)]
Once in the grass, it slows down at a constant rate which means that the acceleration (a) during this period is constant.
So once again using the same formula we have v = O and u = sq rt[2 x g x (H-h)]
so since v^2 = u^2 + 2 x a x s then
O^2 = 2 x g x (H-h) + 2 x a x h
{O^2 - 2 x g x (H - h)}/(2 x h) = a
"The distance that the force moves" is the one among the following choices given in the question that must be increased, if a simple machine reduces the strength of a force. The correct option among all the options that are given in the question is the first option or option "A". I hope the answer helped you.
Answer:
The second ball
Explanation:
Both balls are under the effect of gravity, accelerating with exactly the same value. The first ball is dropped, therefore its initial velocity is zero. Since the second ball has horizontal and vertical velocity components, its initial velocity is given by:

The vertical component is zero, however, it has a horizontal velocity, so its initial speed is not zero, therefore the secong ball has the greater speed at ground level.
Answer:
R=3818Km
Explanation:
Take a look at the picture. Point A is when you start the stopwatch. Then you stand, the planet rotates an angle α and you are standing at point B.
Since you travel 2π radians in 24H, the angle can be calculated as:
t being expressed in hours.

From the triangle formed by A,B and the center of the planet, we know that:
Solving for r, we get:

Answer:
Lose electrons
Explanation:
When a positively charged conductor touches a neutral conductor, the neutral conductor will lose electrons. Only electrons can move from one conductor to another, so if the neutral conductor ended up with a positive charge it means it lost electrons. The conductor touching and the neutral conductor both end up being charged positively.