From the geometry of the problem, the 20 m-long cable creates
the hypotenuse of a right triangle, with the extended of the other two sides of
size 20 m * cos(30 deg), which is around 17.3 m. Therefore, the ball has increased
by 20 m - 17.3 m = 2.7 m.
The potential energy will have altered by m*g*h, which is 1400 kg * 9.8 m/s^2 *
1.6 m , or about 37044 joules.
Answer: 
Explanation:
This problem can be solved by the following equation:

Where:
is the change in kinetic energy
is the electric potential difference
is the electric charge
Finding
:


Finally:

Answer:
E. Zero Maximum
Explanation:
At the point of maximum displacement, the speed is zero while the restoring force is maximum. In fact:
- The restoring force is given by
, where k is the spring constant and x is the displacement - at the point of maximum displacement, x is maximum, so F is maximum as well
- the total energy of the system is sum of kinetic energy and elastic potential energy:

where m is the mass of the system and v is the speed. Since E (the total energy) is constant due to the law of conservation of energy, we have that when K increases, U decreases, and viceversa. As a result, when x increases, v decreases, and viceversa. At the point of maximum displacement, x is maximum, so v will have its minimum value (which is zero, since the system is changing direction of motion).
The Berlin Airlift is best described as the aircraft used to delivered needed food and supplies to the city of Berlin through the air because all other routes were blocked by the Soviet Union.
<h3>What is Berlin Airlift?</h3>
The Berlin airlift was a 1940s military operation that supplied West Berlin with food and other vital goods by air after the Soviet Union blockaded the city.
Thus, the Berlin Airlift is best described as the aircraft used to delivered needed food and supplies to the city of Berlin through the air because all other routes were blocked by the Soviet Union.
Learn more about Berlin Airlift here: brainly.com/question/1104371
#SPJ1