Answer:
hello your question is incomplete attached below is the complete question
answer :
a) I1 = I2
b) J1 > J2
c) E 1 > E2
d) ( vd1 ) > ( vd2 )
Explanation:
a) The currents in the two segments are the same i.e. I1 = I2 and this is because the segments are connected in series
b) Comparing the current densities J1 and J2 in the two segments
note : current density ∝ 1 / area
The area of the second segment is > the area of first segment therefore
J1 > J2
J1 ( current density of first segment )
J2 ( current density of second segment )
c) Comparing the electric field strengths E1 and E2
note : electric field strength ∝ current density
since current density of first segment is > current density of second segment and conductivity of the materials are the same hence
E 1 > E2
d) Comparing the drift speeds Vd1 and Vd2
( vd1 ) > ( vd2 )
this because ; vd ∝ current density
W-APE. For example, work W done to accelerate a positive charge from rest is positive and results from a loss in PE, or a negative APE. There must be a minus sign in front of APE to make W positive. PE can be found at any point by taking one point as a reference and calculating the work needed to move a charge to the other point.
( The capital A’s in the words are supposed to be triangles ! I also hoped this helped ! Please mark me as brainliest !! )
Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º
Answer:
e telescopes
Explanation:
may i be marked brainliest?