Answer:
4.42 × 10⁻³⁷ m
Explanation:
Step 1: Given and required data
- Mass of the body (m): 1 kg
- Velocity of the body (v): 1500 m/s
- Planck's constant (h): 6.63 × 10⁻³⁴ J.s
Step 2: Calculate the de Broglie wavelenght (λ) of the body
We will use de Broglie's equation.
λ = h / m × v
λ = (6.63 × 10⁻³⁴ J.s) / 1 kg × (1500 m/s) = 4.42 × 10⁻³⁷ m
The purpose is that it shows you all the elements we know and it arranges them in groups that are also the same kind like Chemistry.
Answer:
a) First-order.
b) 0.013 min⁻¹
c) 53.3 min.
d) 0.0142M
Explanation:
Hello,
In this case, on the attached document, we can notice the corresponding plot for each possible order of reaction. Thus, we should remember that in zeroth-order we plot the concentration of the reactant (SO2Cl2 ) versus the time, in first-order the natural logarithm of the concentration of the reactant (SO2Cl2 ) versus the time and in second-order reactions the inverse of the concentration of the reactant (SO2Cl2 ) versus the time.
a) In such a way, we realize the best fit is exhibited by the first-order model which shows a straight line (R=1) which has a slope of -0.0013 and an intercept of -2.3025 (natural logarithm of 0.1 which corresponds to the initial concentration). Therefore, the reaction has a first-order kinetics.
b) Since the slope is -0.0013 (take two random values), the rate constant is 0.013 min⁻¹:

c) Half life for first-order kinetics is computed by:

d) Here, we compute the concentration via the integrated rate law once 1500 minutes have passed:

Best regards.
<span>
As a liquid is heated, its vapor pressure increases until the vapor pressure
equals the pressure of the gas above it.
Bubbles of vaporized liquid (i.e., gas) form within the bulk liquid and
then rise to the surface where they burst and release the gas. (At
the boiling temperature the vapor inside a bubble has enough pressure to
keep the bubble from collapsing.)
In order to form vapor, the molecules of the liquid must overcome the forces
of attraction between them.<span>
The temperature of a boiling liquid remains constant, even when more heat
is add.</span></span>
Answer:
1) Yes
2) No
Explanation:
A strip of solid magnesium metal is put into a beaker of 0.053M ZnSO4 solution-YES
A chemical reaction occurs
Mg(s) + ZnSO4(aq) ----------> MgSO4(aq) +Zn(s)
This reaction is possible because magnesium is far higher than zinc in the activity series of metals hence magnesium can displace zinc from a solution of a zinc salt.
A strip of solid zinc metal is put into a beaker of 0.058M MgBr2 solution. NO
A chemical reaction does not occur because magnesium is higher than zinc in the activity series hence zinc cannot displace magnesium from a solution of its salt.