1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vova2212 [387]
3 years ago
9

Compare the momentum of a 6,300-kg elephant walking 0.11 m/s and a 50-kg dolphin swimming 10.4 m/s. your answer

Physics
1 answer:
bogdanovich [222]3 years ago
5 0
<span>First sum applied the Newton's second law motion: F = ma Force = mass* acceleration This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time, force=(mass*velocity)/time such that, (mass*velocity)/time=momentum/time Therefore we get mass*velocity=momentum Momentum=mass*velocity Elephant mass=6300 kg; velocity=0.11 m/s Momentum=6300*0.11 P=693 kg (m/s) Dolphin mass=50 kg; velocity=10.4 m/s Momentum=50*10.4 P=520 kg (m/s) The elephant has more momentum(P) because it is large.</span>
You might be interested in
____, one of Saturn's icy moons, is unusual in the solar system in that it has volcanic activity that ejects plumes of icy parti
blondinia [14]

Answer: Enceladus

Explanation:

Enceladus is a small, icy body with an undergound ocean beneath its crust. Cassini discovered that geyser-like jets spew water vapor and ice particles. It is also the sixth largest moon in Saturn and just about a tenth of the largest moon in Saturn; Titan. It is often regarded as one of the most reflective body in the solar system as a result of its icy surface.

4 0
3 years ago
A 740-kg boulder is raised from a quarry 119 m deep by a long uniform chain having a mass of 550 kg . This chain is of uniform s
Naddika [18.5K]

Answer:

A) the maximum acceleration the boulder can have and still get out of the quarry

B) how long does it take to be lifted out at maximum acceleration if it started from rest

Explanation:

A)

let +y is upward. look below at the free body diagram. the mass M refers to the combined mass of the boulder and chain.

the weight of the chain is:   w_{c} =m_{c} g   and maximum tension is T=2.50 m_{c} g=1.41*10^4N

total mass and weight is :

M =m_{c}+ m_{b} =740kg+550kg=1290 kg

w_{M} =1.2650*10^4N

∑F_{y} =ma_{y}

T-M_{g} =Ma_{y}

a_{y} =(t-M_{g} )/M=(2.50m_{c} -M_{g} )/M=(2.50.550kg-1290kg)(9.8m/s^2)/1290kg

=0.645m/s^2

B)

maximum acceleration

a_{y} =0.645m/s^2\\\\y-y_{0} =119m\\v_{0y} =0

using y-y_{0} =v_{oy} t+1/2(a_{y} )t^2

to solve for t

t=\sqrt{2(y-y_{0} )/a_{y} }

t=\sqrt{2(119m)/0.645m/s^2} =19.20s

6 0
3 years ago
Tarzan swings on a 26.2 m long vine initially inclined at an angle of 28° from the vertical. (a) What is his speed at the bottom
Marianna [84]

Answer

given,

length of the swing = 26.2 m

inclined at an angle = 28°

let, the initial height of the Tarzan be h

h = L (1 - cos θ)

a) initial velocity v₁ = 0 m/s

   final velocity of Tarzan = v_f

law of conservation of energy

  PE_i + KE_i = PE_f + KE_f

mgh_i + \dfrac{1}{2}mv_i^2= mgh_f + \dfrac{1}{2}mv_f^2

       mgh_i + 0 = 0 + \dfrac{1}{2}mv_f^2

          mgh_i = \dfrac{1}{2}mv_f^2

             v_f = \sqrt{2gh_i}

                   = \sqrt{2gL(1- cos\theta)}

                   = \sqrt{2\times 9.8 \times 26.2(1- cos 28^0)}

                          = 7.75 m/s

the speed tarzan at the bottom of the swing

v_f = 7.75 m/s

b)initial speed of the  = 3 m/s

mgh_i + \dfrac{1}{2}mv_i^2= mgh_f + \dfrac{1}{2}mv_f^2

       mgh_i + 0 = 0 + \dfrac{1}{2}mv_f^2

          mgh_i+ \dfrac{1}{2}mv_i^2 = \dfrac{1}{2}mv_f^2

          gh_i+ \dfrac{1}{2}v_i^2 = \dfrac{1}{2}v_f^2

             v_f = \sqrt{v_1^2+2gh_i}

             v_f = \sqrt{3^2+2\times 9.8 \times (1- cos 28^0)}

                       v_f= 11.29 m/s

3 0
3 years ago
A 200.0 kg piano is elevated by a crane to a height of 10.0 meters above a sidewalk. If the rope holding the piano breaks, what
Nitella [24]
All that business about the crane and the rope and the falling
is only there to confuse us.

The piano ended up 5 meters above the ground.

           Potential energy = (mass) (gravity) (height)

                                   = (200 kg) (9.81 m/s²) (5 m)

                                   = (200 · 9.81 · 5)  (kg-m²/s²)

                                   =   9,810 joules   . 
5 0
2 years ago
Your tired 10 lb. baby cousin is cradled in your arms as you're walking back and forth across a 15m room to get her to fall asle
Mashcka [7]

Work done = Force x Distance

Force = 10 lb = 44.5 N

Work Done = 44.5 N x 15 m

= 667.5 N-m

6 0
3 years ago
Other questions:
  • Three disks are spinning independently on the same axle without friction. Their respective rotational inertias and angular speed
    10·2 answers
  • What is the example of current electricity?
    12·1 answer
  • A 16 g rifle bullet traveling 240 m/s buries itself in a 3.6 kg pendulum hanging on a 2.5 m long string, which makes the pendulu
    9·1 answer
  • Is this object showing acceleration for the first 2 seconds? explain your answer.
    8·1 answer
  • Which term describes the increase in a material’s volume due to an increase in temperature?
    12·2 answers
  • Your boat runs aground at high speed. What should you do FIRST?
    11·1 answer
  • The motion of a car on a position-time graph is represented with a horizontal line. What does this indicate about the car’s moti
    10·1 answer
  • What are ribosomes?<br><br> I'm tired. But I have insomnia. Big ugh moment. &lt;.&lt;.
    13·1 answer
  • The ancient fish fossils were dated using C-14. If 1/16 the original amount of C-14 remains in the skeletons, approximately how
    5·1 answer
  • Is work being done on a barbell when a weight lifter is holding the barbell<br> over his head?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!