Answer:
C. Pressure gradient equals gas flow over resistance.
Explanation:
As we know that pressure gradient is the driving force for the gas to flow from one point to other point
And we know that the flow rate is directly proportional to the driving force and it inversely depends on the resistance to flow
so we can say
Flow Rate = 
Flow Rate = 
so we can say that correct statements are as below
A. Gas flow equals pressure gradient over resistance.
B. Resistance equals pressure gradient over gas flow.
D. The amount of gas flowing in and out of the alveoli is directly proportional to the difference in pressure or pressure gradient between the external atmosphere and the alveoli.
Answer:
The phenomenon known as "tunneling" is one of the best-known predictions of quantum physics, because it so dramatically confounds our classical intuition for how objects ought to behave. If you create a narrow region of space that a particle would have to have a relatively high energy to enter, classical reasoning tells us that low-energy particles heading toward that region should reflect off the boundary with 100% probability. Instead, there is a tiny chance of finding those particles on the far side of the region, with no loss of energy. It's as if they simply evaded the "barrier" region by making a "tunnel" through it.
Explanation:
This can be solve using the formula P = I^2 * Rwhere P is the powerI is the CurrentR is the resistanceP = I^2 * R
1/4 Watt = I^2 * 100 ohm solve for II^2 = 1/400 I = 0.05 amps then using the formula to solve for the voltage:V = I * RV = 0.05 amps * 100 ohms V = 5 volts
This is a sneaky trick question, to help you discover whether you know
one of the differences between velocity and speed.
=======================================
If you make a list of the distances and directions, and ignore the times,
you find these:
4 - west, (3 + 1) - east . . . . . zero in the east/west direction
1.5 - north, 1.5 - south . . . . . zero in the north/south direction
This jogger went out, had a nice jog around the neighborhood,and ended up exactly where he started.
Average velocity = (distance between start point and end point) / (time)
IF the question asked for average SPEED, then you would need the total distance, and divide it by the total time. But it asks for VELOCITY, and <u>that</u> only involves the straight distance between the start point and the end point, regardless of the route taken in between.
The jogger ended up exactly where he started. The distance between start and end points was zero. Average velocity is (zero) / (time) . And that fraction is going to be <em><u>Zero</u></em>, no matter how long or how short the trip was, and no matter how much time it took.
Answer: B 100 J
Explanation: Pic Attached. Hope This Helps.