1) 29.8 C
At the beginning, the metal is at higher temperature (70.4 C) while the water is at lower temperature (23.6 C). When they are put in contact, the metal transfers heat to the water, until they reach thermal equilibrium: at thermal equilibrium the two objects (the metal and the water have same temperature). Therefore, since the temperature of the water at thermal equilibrium is 29.8 C, the final temperature of the metal must be the same (29.8 C).
2) 6.2 C
The temperature change of the water is given by the difference between its final temperature and its initial temperature:

where

Substituting into the formula,

And the positive sign means that the temperature of the water has increased.
3) -40.6 C
The temperature change of the metal is given by the difference between its final temperature and its initial temperature:

where

Substituting into the formula,

And the negative sign means the temperature of the metal has decreased.
Newton's law of conservation states that energy of an isolated system remains a constant. It can neither be created nor destroyed but can be transformed from one form to the other.
Implying the above law of conservation of energy in the case of pendulum we can conclude that at the bottom of the swing the entire potential energy gets converted to kinetic energy. Also the potential energy is zero at this point.
Mathematically also potential energy is represented as
Potential energy= mgh
Where m is the mass of the pendulum.
g is the acceleration due to gravity
h is the height from the bottom z the ground.
At the bottom of the swing,the height is zero, hence the potential energy is also zero.
The kinetic energy is represented mathematically as
Kinetic energy= 1/2 mv^2
Where m is the mass of the pendulum
v is the velocity of the pendulum
At the bottom the pendulum has the maximum velocity. Hence the kinetic energy is maximum at the bottom.
Also as it has been mentioned energy can neither be created nor destroyed hence the entire potential energy is converted to kinetic energy at the bottom and would be equivalent to 895 J.
Answer:
- 5436 J
Explanation:
mass of car, m = 120 kg
radius of loop, r = 12 m
velocity at the bottom (A) = Va = 25 m/s
Velocity at the top(B) = Vb = 8 m/s
Vertical distance from A to B = diameter of loop, h = 2 x 12 = 24 m
by use of Work energy theorem
Work done by all the forces = change in kinetic energy of the body
Work done by the force + Work done by the friction = Kinetic energy at B - kinetic energy at A
- m x g x h + Work done by friction = 0.5 x 120 x (Vb^2 - Va^2)
- 120 x 9.8 x 24 + Work done by friction = 60 x (64 - 625)
- 28224 + Work done by friction = - 33660
Work done by friction = -33660 + 28224 = - 5436 J