1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Drupady [299]
3 years ago
5

The ancient fish fossils were dated using C-14. If 1/16 the original amount of C-14 remains in the skeletons, approximately how

old are the fish. The half-life of C-14 is 5730.
a) 11,460 years
b) 17,190 years
c) 22,920 years
d) 28,650 years​
Physics
1 answer:
DIA [1.3K]3 years ago
5 0

Answer:

c) 22,920 years

Explanation:

The half-life of C-14 is 5730 so in 5730 years , amount of C-14 is reduced to half.

In 5730 x 2  years , the amount of C-14 is reduced to 1/4 .

In 5730 x 3 years ,  the amount of C-14 is reduced to 1/8 .

In 5730 x 4 years ,  the amount of C-14 is reduced to 1/16 .

In 22920 years ,  the amount of C-14 is reduced to 1/16 .

So the answer is 22920 years.

You might be interested in
Two particles execute simple harmonic motion of the same amplitude and frequency along close parallel lines. They pass each othe
deff fn [24]

Answer:

\theta_2 - \theta_1 = 156.93 degree

Explanation:

As we know that the displacement of the particle from the mean position is 1/5 times of its amplitude

so we have

y = A sin\omega t

y = \frac{A}{5}

so now we have

\frac{A}{5} = A sin\omega t

now we have

\theta_1 = 11.53 degree

so the phase other particle in opposite direction is given as

\theta_2 = 180 - 11.53 = 168.46 degree

so we have phase difference given as

\theta_2 - \theta_1 = 168.46 - 11.53

\theta_2 - \theta_1 = 156.93 degree

7 0
3 years ago
How are base units and derived units related?
Vlad1618 [11]

Answer:

SI derived units

Other quantities, called derived quantities, are defined in terms of the seven base quantities via a system of quantity equations. The SI derived units for these derived quantities are obtained from these equations and the seven SI base units.

Explanation:

Hope this helps :D

8 0
3 years ago
how much gravitational potential energy do you give a 70 kg person when you lift him up 3 m in the air?
SCORPION-xisa [38]

Given gravitational potential energy when he's lifted is 2058 J.

Kinetic energy is transferred to the person.

Amount of kinetic energy the person has is -2058 J

velocity of person = 7.67 m/s².

<h3>Explanation:</h3>

Given:

Weight of person = 70 kg

Lifted height = 3 m

1. Gravitational potential energy of a lifted person is equal to the work done.

PE_g=W=m\times g\times h\\Acceleration due to gravity = g = 9.8 \ m/s^2 \\PE_g= m = m\times g\times h= 70\times 9.8 \times 3 = 2058\ kg.m/s^2 = 2058\ J

Gravitational potential energy is equal to 2058 Joules.

2. The Gravitational potential energy is converted into kinetic energy. Kinetic energy is being transferred to the person.

3. Kinetic energy gained = Potential energy lost = -PE_g = -2058\ kg.m/s^2

Kinetic energy gained by the person = (-2058 kg.m/s²)

4. Velocity = ?

Kinetic energy magnitude= \frac{1}{2} m\times v^2 = m\times g \times h

Solving for v, we get

v=\sqrt{2gh} =\sqrt{2\times 9.8 \times 3} = \sqrt{58.8} = 7.67 m/s^2

The person will be going at a speed of 7.67 m/s².

4 0
3 years ago
Satellites can focus on specific latitudes using:
Fittoniya [83]
B- east west orbits
4 0
2 years ago
A steady electric current flows through a wire. If 9.0 C of charge passes a particular spot in the wire in a time period of 2.0
defon

1) Current: 4.5 A

2) Time taken: 4.7 s

Explanation:

1)

The electric current intensity is defined as the rate at which charge flows in a conductor; mathematically:

I=\frac{q}{t}

where

I is the current

q is the amount of charge passing a given point in a time t

For the wire in this problem, we have

q = 9.0 C is the amount of charge

t = 2.0 s is the time interval

Solving for I, we find the current:

I=\frac{9.0}{2.0}=4.5 A

2)

To solve this problem, we can use again the same formula

I=\frac{q}{t}

where

I is the current

q is the amount of charge passing a given point in a time t

In this problem, we have:

I = 3.0 A (current)

q = 14.0 C (charge)

Therefore, the time taken for the charge to move past a particular spot in the wire is

t=\frac{q}{I}=\frac{14.0}{3.0}=4.7 s

Learn more about electric current:

brainly.com/question/4438943

brainly.com/question/10597501

brainly.com/question/12246020

#LearnwithBrainly

8 0
3 years ago
Other questions:
  • An electron (mass m=9.11×10−31kg) is accelerated from the rest in the uniform field E⃗ (E=1.45×104N/C) between two thin parallel
    11·1 answer
  • How many miles long is burma from north to south?
    6·1 answer
  • How Antman can breathe when his size is smaller then oxygen molecules?​
    10·1 answer
  • TheStability of atomic nuclei seems to be related to the ratio of what
    9·1 answer
  • Two swimmers relax close together on air mattresses in a pool. One swimmer’s mass is 48 kg, and the other’s mass is 55 kg. If th
    12·2 answers
  • Teams a and b are in a tug of war challenge. Team a wins. What can be said about team a
    6·2 answers
  • A car that travels from point A to point B in four hours, and then from point B back to point A in six hours. The road between p
    8·2 answers
  • ALOT OF POINTS PLZ HURRYQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQWhat does Newton's third law sa
    15·1 answer
  • A wave is propagating from left to right in a medium. The particles in the medium are also vibrating from left to right. What ki
    7·1 answer
  • a charged partocle produces an electric field with a magnitude of 2.0 N/C at a point that is 50cm away from the particle
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!