Answer:
h = 23.716 m
Explanation:
Given that,
The time taken by the stone to hit the water is, t = 2.2 s
Height of the bridge above the ground, h = ?
The distance that the body will fall through the time is given by the formula
S = 1/2 gt² m
Where,
g - acceleration due to gravity
Substituting the values in the above equation
S = 1/2 x 9.8 m/s² x (2.2 s)²
= 23.716 m
Therefore, the height of the bridge from the surface of the water is h = 23.716 m
Explanation:
Wave is defined as a disturbance or oscillation that travels through space-time, accompanied by a transfer of energy. Wave motion transfers energy from one point to another, often with no permanent displacement of the particles of the medium.
The velocity of wave is equal to the product of its wavelength and frequency (number of vibrations per second). Longitudinal waves like sound waves travel through a medium.
Therefore, a wave move from a layer of high velocity to that of a lower velocity the wavelength changes (that is, decreases) as it moves.
Answer:
The SI unit of thermal conductivity is watts per meter-kelvin (W/(m⋅K)).
Explanation:
hope this will help u
Answer
Ceres, Pluto, and Eris are classified as DWARF PLANET.
A) Leftover planetesimals inside the frost line are known as ASTEROIDS.
B) METEORITES are the pieces of Asteroids which are fallen on the earth's surface.
C) COMETS are the objects which are visible with long tails.
D) COMETS are also the leftover planetesimals that are occupied by the jovian planets and are formed in the solar system.
E) Meteor showers are associated with debris from COMETS
Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s