Answer:
3.01 × 10^24 particles
Explanation:
According to Avagadro, in one mole of a substance, there are 6.02 × 10^23 atoms or particles.
Using the formula: N = n × NA
Where;
N= number of particles or atoms
n = number of moles
NA = Avagadro's constant or number
This means that for 5 moles of a substance, there will be:
5 × 6.02 × 10^23
= 30.1 × 10^23
= 3.01 × 10^24 particles
Answer:
Temperature.
Explanation:
Kinetic molecular theory of gases states that gas particles exhibit a perfectly elastic collision and are constantly in motion.
According to the kinetic-molecular theory, the average kinetic energy of gas particles depends on temperature.
This ultimately implies that, the average kinetic energy of gas particles is directly proportional to the absolute temperature of an ideal gas. Thus, an increase in the average kinetic energy of gas particles would cause an increase in the absolute temperature of an ideal gas.
Temperature can be defined as a measure of the degree of coldness or hotness of a physical object. It is measured with a thermometer and its units are Celsius (°C), Kelvin (K) and Fahrenheit (°F).
Answer:
v2=40.35L
Explanation:
p1v1/t1=p2v2/t2
v2=t2p1v1/t1p2
v2=984*760*22.4/273.15*1520
v2=40.35 L
Answer:
1.94 L
Explanation:
21°C = 21 +273 = 294 K
27°C = 27 + 273 = 300 K
T1/V1 = T2/V2
294 K/1.9 L = 300 K/x L
x = (1.9*300)/294 ≈ 1.94 L