1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natka813 [3]
3 years ago
6

What mass of butane in grams is necessary to produce 1.5×103 kj of heat what mass of co2 is produced?

Chemistry
2 answers:
Alexandra [31]3 years ago
5 0

\boxed{32.7{\text{3 g}}} of butane is necessary to produce 1.5 \times {10^3}\;{\text{kJ}}of heat and \boxed{99.32\;{\text{g}}} of {\text{C}}{{\text{O}}_{\text{2}}} is produced.

Further explanation:

Stoichiometry:

It is used to determine the amount of species present in the reaction by the relationship between reactants and products. It is used to determine the moles of a chemical species when moles of other chemical species present in the reaction is given.

Consider the general reaction,

{\text{A}} + 2{\text{B}} \to 3{\text{C}}

Here,

A and B are reactants.

C is the product.

One mole of A reacts with two moles of B to produce three moles of C. The stoichiometric ratio between A and B is 1:2, the stoichiometric ratio between A and C is 1:3 and the stoichiometric ratio between B and C is 2:3.

Combustion reaction:

It is the reaction in which the reactant reacts with molecular oxygen to form carbon dioxide and a water molecule. Molecular oxygen acts as the oxidizing agent in these reactions. A large amount of heat is released and therefore combustion reactions are exothermic in nature.

The combustion of butane occurs as follows:

{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}+\frac{{13}}{2}{{\text{O}}_2} \to 4{\text{C}}{{\text{O}}_2} + 5{{\text{H}}_{\text{2}}}{\text{O}}

The value of \Delta {{\text{H}}_{{\text{reaction}}}} is -2658 kJ/mol. This indicates the heat produced when one mole of butane is combusted.

The number of moles of butane \left( {{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}} \right) required in the given reaction is calculated as follows:

\begin{aligned}{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}&=\left({-150{\text{0 kJ}}} \right)\left( {\frac{{{\text{1 mol}}}}{{ - 265{\text{8 kJ}}}}}\right)\\&=0.56{\text{43 mol}} \\ \end{aligned}

The formula to calculate the mass of butane \left({{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}\right) is as follows:

{\text{Mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}=\left( {{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}\right)\left({{\text{Molar mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}\right)                   ...... (1)

The number of moles of {{\text{C}}_4}{{\text{H}}_{10}} is 0.5643 mol.

The molar mass of {{\text{C}}_4}{{\text{H}}_{10}} is 58 g/mol.

Substitute these values in equation (1).

\begin{aligned}{\text{Mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}&=\left( {{\text{0}}{\text{.5643 mol}}}\right)\left( {\frac{{{\text{58 g}}}}{{{\text{1 mol}}}}}\right)\\&=32.72{\text{94 g}}\\&\approx{\text{32}}{\text{.73 g}} \\ \end{aligned}

Therefore the mass of butane required is 32.73 g.

According to the reaction stoichiometry, one mole of {{\text{C}}_4}{{\text{H}}_{10}} produces four moles of {\text{C}}{{\text{O}}_{\text{2}}}. The moles of {\text{C}}{{\text{O}}_{\text{2}}} produced in the given reaction are calculated as follows:

\begin{aligned}{\text{Moles of C}}{{\text{O}}_{\text{2}}}&=\left({{\text{0}}{\text{.5643 mol }}{{\text{C}}_4}{{\text{H}}_{10}}}\right)\left({\frac{{{\text{4 mol C}}{{\text{O}}_{\text{2}}}}}{{1\;{\text{mol }}{{\text{C}}_4}{{\text{H}}_{10}}}}} \right)\\&=2.257{\text{2 mol}}\\\end{gathered}

The formula to calculate the mass of {\text{C}}{{\text{O}}_{\text{2}}} is as follows:

{\text{Mass of C}}{{\text{O}}_{\text{2}}} = \left( {{\text{Moles of C}}{{\text{O}}_{\text{2}}}} \right)\left( {{\text{Molar mass of C}}{{\text{O}}_{\text{2}}}} \right)              ...... (2)

Substitute 2.2572 mol for the moles of {\text{C}}{{\text{O}}_{\text{2}}} and 44 g/mol for the molar mass of {\text{C}}{{\text{O}}_{\text{2}}} in equation (2).

\begin{aligned}{\text{Mass of C}}{{\text{O}}_{\text{2}}}&=\left({{\text{2}}{\text{.2572 mol}}} \right)\left( {\frac{{{\text{44 g}}}}{{{\text{1 mol}}}}} \right)\\&=99.316{\text{8 g}}\\&\approx {\text{99}}{\text{.32 g}} \\ \end{aligned}

Therefore the mass of carbon dioxide produced is 99.32 g.

Learn more:

1. Calculate \Delta {\text{H}} for the reaction using Hess law: brainly.com/question/11293201

2. Calculate the hydroxide ion concentration: brainly.com/question/11293214

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole concept

Keywords: butane, mass, CO2, C4H10, molar mass of CO2, molar mass of C4H10, 32.73 g, 99.32 g, 44 g/mol, 58 g/mol, moles of CO2, moles of C4H10, 2.2572 mol, 0.5643 mol, stoichiometry, one mole, four moles.

kari74 [83]3 years ago
4 0
The heat of reaction (i.e. combustion) of butane (C_{4} H_{10}) when reacted with oxygen (O_{2})  is -2658 kJ/mol butane, and the chemical reaction is given by: 

C_{4} H_{10} + \frac{13}{2} O_{2} ---> 4 CO_{2}  + 5 H_{2}O

The mass of butane required in the reaction is based on the heat produced by the reaction, which is given to be -1,500 kJ. The minus sign is added because the reaction releases heat (exothermic), which means that the products are in a "lower energy state" than the reactants. 

Dividing this with the heat of reaction per mole of butane reacted would give the number of moles butane required. Then, multiplying the answer with the molar mass of butane which is 58 grams/mole, will give the mass of butane required. 

Moles of butane = [(-1,500 kJ)/(-2658 kJ/mol butane)]
Moles of butane = 0.5643 moles butane

Mass of butane  = 0.5643 moles butane * 58 grams/mol butane
Mass of butane  = 32.73 grams butane

The mass of carbon dioxide (CO_{2}) can be determined by multiplying the moles of butane (C_{4} H_{10}) with the mole ratio of (CO_{2}) produced to the (C_{4} H_{10}) reacted, and then with the molar mass of (CO_{2}), which is 44 grams/mole. 

Mass of carbon dioxide produced 
    = 0.5643 moles butane * [4 moles CO_{2}/ 1 mole C_{4} H_{10}] * 44 grams/mole CO_{2}

Mass of carbon dioxide produced  
    = 99.32 grams CO_{2}

Thus, the mass of butane required is 32.73 grams, and the mass of carbon dioxide produced from the reaction of this amount of butane is 99.32 grams. 
                
You might be interested in
What is an energy transformation?
Dafna11 [192]
Energy is invisible yet it's all around us and throughout the universe. Energy can never be made or destroyed, but its form can be converted and changed.
While energy can be transferred or transformed, the total amount of energy does not change – this is called energy conservation.
Energy transformation, also known as energy conversion, is the process of changing energy from one form to another. In physics, energy is a quantity that provides the capacity to perform work or provides heat.
When energy is transformed from one form to another, or moved from one place to another, or from one system to another there is energy loss. This means that when energy is converted to a different form, some of the input energy is turned into a highly disordered form of energy, like heat. This consent is known as “hidden energy”.
4 0
3 years ago
At which electrode does oxidation occur in a
Trava [24]
The right answer for the question that is being asked and shown above is that: "(2) the cathode in a voltaic cell and the anode in an electrolytic cell." At the status of electrode does oxidation occur in a voltaic cell and in an electrolytic cell is that the cathode in a voltaic cell and the anode in <span>an electrolytic cell</span>
5 0
3 years ago
Read 2 more answers
Predict the spontaneity of a reaction (and the temperature dependence of the spontaneity) for each possible combination of signs
Akimi4 [234]

Answer and Explanation:

At constant pressure and constant temperature, the Gibbs free energy of a process is given by the following equation:

ΔG= ΔH - T ΔS

The process is spontaneous when ΔG<0. For this, there are four alternatives depending on the signs of ΔH and ΔS and the temperature (T):

1) ΔH negative, ΔS positive ⇒ b)The reaction will be spontaneous at all temperatures.

ΔG= (-H) - T (+S)   ⇒ ΔG<0 always

2) ΔH positive, ΔS negative ⇒ c)The reaction will be nonspontaneous at all temperatures.

ΔG= (+H) - T (-S)   ⇒ ΔG>0 always

3) ΔH negative, ΔS negative ⇒ d)The reaction will be spontaneous at low temperature, but nonspontaneous at high temperature.

ΔG= (-H) - T (-S)  ⇒ ΔG<0 if TΔS is lower than ΔH, because is the positive term

4)ΔH positive, ΔS positive ⇒ a)The reaction will be nonspontaneous at low temperature, but spontaneous at high temperature.

ΔG= (+H) - T (+S) ⇒ ΔG<0 if TΔS higher than ΔH because is the negative term

8 0
3 years ago
LAST ATTEMPT! Covalent compound naming ! !!
I am Lyosha [343]

Answer:

Name the non-metal furthest to the left on the periodic table by its elemental name.

Name the other non-metal by its elemental name and an -ide ending.

Use the prefixes mono-, di-, tri-.... to indicate the number of that element in the molecule.

im prolly wrong

3 0
2 years ago
Calculate the pOH for a solution with a hydroxide ion, (OH-) of concentration of 6.49 X 10-11 M.
Ray Of Light [21]

Answer:

Calculate the pOH for a solution with a hydroxide ion, (OH-) of concentration of 6.49 X 10-11 M.

Calculate the pH.

Note: the answers should have three significant figures

The pOH is: Blank 1

The pH is: Blank 2

Explanation:

7 0
2 years ago
Other questions:
  • Stephanie has been doing research on how petroleum is formed. She says that oxygen must be present while the tiny plants and ani
    12·2 answers
  • Identify the type of interactions involved in each of the following processes taking place during the dissolution of sodium chlo
    11·1 answer
  • Which of the following is not organic?
    9·1 answer
  • Study the graph about seismic waves.
    7·2 answers
  • A beaker is filled to the 500 mL mark with alcohol. What increase in volume (in mL) does the beaker contain when the temperature
    13·1 answer
  • Describe the role of science in the development of new food products.
    10·1 answer
  • A mixture of three noble gases has a total pressure of 1.25 atm. The individual pressures exerted by neon and argon are 0.22 atm
    11·1 answer
  • What you think would happen if global warming caused a decrease in all clouds
    11·1 answer
  • **The diagram below shows the Earth at four different positions in its journey around the Sun.
    5·2 answers
  • A molecule is the smallest part of
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!