1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natka813 [3]
3 years ago
6

What mass of butane in grams is necessary to produce 1.5×103 kj of heat what mass of co2 is produced?

Chemistry
2 answers:
Alexandra [31]3 years ago
5 0

\boxed{32.7{\text{3 g}}} of butane is necessary to produce 1.5 \times {10^3}\;{\text{kJ}}of heat and \boxed{99.32\;{\text{g}}} of {\text{C}}{{\text{O}}_{\text{2}}} is produced.

Further explanation:

Stoichiometry:

It is used to determine the amount of species present in the reaction by the relationship between reactants and products. It is used to determine the moles of a chemical species when moles of other chemical species present in the reaction is given.

Consider the general reaction,

{\text{A}} + 2{\text{B}} \to 3{\text{C}}

Here,

A and B are reactants.

C is the product.

One mole of A reacts with two moles of B to produce three moles of C. The stoichiometric ratio between A and B is 1:2, the stoichiometric ratio between A and C is 1:3 and the stoichiometric ratio between B and C is 2:3.

Combustion reaction:

It is the reaction in which the reactant reacts with molecular oxygen to form carbon dioxide and a water molecule. Molecular oxygen acts as the oxidizing agent in these reactions. A large amount of heat is released and therefore combustion reactions are exothermic in nature.

The combustion of butane occurs as follows:

{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}+\frac{{13}}{2}{{\text{O}}_2} \to 4{\text{C}}{{\text{O}}_2} + 5{{\text{H}}_{\text{2}}}{\text{O}}

The value of \Delta {{\text{H}}_{{\text{reaction}}}} is -2658 kJ/mol. This indicates the heat produced when one mole of butane is combusted.

The number of moles of butane \left( {{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}} \right) required in the given reaction is calculated as follows:

\begin{aligned}{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}&=\left({-150{\text{0 kJ}}} \right)\left( {\frac{{{\text{1 mol}}}}{{ - 265{\text{8 kJ}}}}}\right)\\&=0.56{\text{43 mol}} \\ \end{aligned}

The formula to calculate the mass of butane \left({{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}\right) is as follows:

{\text{Mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}=\left( {{\text{Moles of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}\right)\left({{\text{Molar mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}}\right)                   ...... (1)

The number of moles of {{\text{C}}_4}{{\text{H}}_{10}} is 0.5643 mol.

The molar mass of {{\text{C}}_4}{{\text{H}}_{10}} is 58 g/mol.

Substitute these values in equation (1).

\begin{aligned}{\text{Mass of }}{{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}&=\left( {{\text{0}}{\text{.5643 mol}}}\right)\left( {\frac{{{\text{58 g}}}}{{{\text{1 mol}}}}}\right)\\&=32.72{\text{94 g}}\\&\approx{\text{32}}{\text{.73 g}} \\ \end{aligned}

Therefore the mass of butane required is 32.73 g.

According to the reaction stoichiometry, one mole of {{\text{C}}_4}{{\text{H}}_{10}} produces four moles of {\text{C}}{{\text{O}}_{\text{2}}}. The moles of {\text{C}}{{\text{O}}_{\text{2}}} produced in the given reaction are calculated as follows:

\begin{aligned}{\text{Moles of C}}{{\text{O}}_{\text{2}}}&=\left({{\text{0}}{\text{.5643 mol }}{{\text{C}}_4}{{\text{H}}_{10}}}\right)\left({\frac{{{\text{4 mol C}}{{\text{O}}_{\text{2}}}}}{{1\;{\text{mol }}{{\text{C}}_4}{{\text{H}}_{10}}}}} \right)\\&=2.257{\text{2 mol}}\\\end{gathered}

The formula to calculate the mass of {\text{C}}{{\text{O}}_{\text{2}}} is as follows:

{\text{Mass of C}}{{\text{O}}_{\text{2}}} = \left( {{\text{Moles of C}}{{\text{O}}_{\text{2}}}} \right)\left( {{\text{Molar mass of C}}{{\text{O}}_{\text{2}}}} \right)              ...... (2)

Substitute 2.2572 mol for the moles of {\text{C}}{{\text{O}}_{\text{2}}} and 44 g/mol for the molar mass of {\text{C}}{{\text{O}}_{\text{2}}} in equation (2).

\begin{aligned}{\text{Mass of C}}{{\text{O}}_{\text{2}}}&=\left({{\text{2}}{\text{.2572 mol}}} \right)\left( {\frac{{{\text{44 g}}}}{{{\text{1 mol}}}}} \right)\\&=99.316{\text{8 g}}\\&\approx {\text{99}}{\text{.32 g}} \\ \end{aligned}

Therefore the mass of carbon dioxide produced is 99.32 g.

Learn more:

1. Calculate \Delta {\text{H}} for the reaction using Hess law: brainly.com/question/11293201

2. Calculate the hydroxide ion concentration: brainly.com/question/11293214

Answer details:

Grade: Senior School

Subject: Chemistry

Chapter: Mole concept

Keywords: butane, mass, CO2, C4H10, molar mass of CO2, molar mass of C4H10, 32.73 g, 99.32 g, 44 g/mol, 58 g/mol, moles of CO2, moles of C4H10, 2.2572 mol, 0.5643 mol, stoichiometry, one mole, four moles.

kari74 [83]3 years ago
4 0
The heat of reaction (i.e. combustion) of butane (C_{4} H_{10}) when reacted with oxygen (O_{2})  is -2658 kJ/mol butane, and the chemical reaction is given by: 

C_{4} H_{10} + \frac{13}{2} O_{2} ---> 4 CO_{2}  + 5 H_{2}O

The mass of butane required in the reaction is based on the heat produced by the reaction, which is given to be -1,500 kJ. The minus sign is added because the reaction releases heat (exothermic), which means that the products are in a "lower energy state" than the reactants. 

Dividing this with the heat of reaction per mole of butane reacted would give the number of moles butane required. Then, multiplying the answer with the molar mass of butane which is 58 grams/mole, will give the mass of butane required. 

Moles of butane = [(-1,500 kJ)/(-2658 kJ/mol butane)]
Moles of butane = 0.5643 moles butane

Mass of butane  = 0.5643 moles butane * 58 grams/mol butane
Mass of butane  = 32.73 grams butane

The mass of carbon dioxide (CO_{2}) can be determined by multiplying the moles of butane (C_{4} H_{10}) with the mole ratio of (CO_{2}) produced to the (C_{4} H_{10}) reacted, and then with the molar mass of (CO_{2}), which is 44 grams/mole. 

Mass of carbon dioxide produced 
    = 0.5643 moles butane * [4 moles CO_{2}/ 1 mole C_{4} H_{10}] * 44 grams/mole CO_{2}

Mass of carbon dioxide produced  
    = 99.32 grams CO_{2}

Thus, the mass of butane required is 32.73 grams, and the mass of carbon dioxide produced from the reaction of this amount of butane is 99.32 grams. 
                
You might be interested in
The chemical formula tells the types of atoms and how many of each are contained in a compound. Please select the best answer fr
kykrilka [37]
The anser should be false

7 0
4 years ago
Why do ocean waves make a good source of energy?
JulsSmile [24]

Answer:

Ocean waves contain tremendous energy potential. Wave power devices extract energy directly from the surface motion of ocean waves. In many areas of the world, the wind blows with enough consistency and force to provide continuous waves along the shoreline.

6 0
3 years ago
Which option is an example of a chemical property?
strojnjashka [21]
Answer: B= Rusting ability
Explanation:
Physical property is defined as the property which can be measured and whose value describes the state of physical system. For Example: State, density etc.
Chemical property is defined as the property of a substance which is observed during a reaction where the chemical composition identity of the substance gets changed.
1. Boiling point: is a physical property as there is a change of state.
2. Rusting ability: is a chemical property as there is formation of new substances.
3. Melting point: is a physical property as there is a change of state.
4. Density: is a physical property as there is no formation of new substances.
5 0
3 years ago
Exactly 1.0 mol N2O4 is placed in an empty 1.0-L container and is allowed to reach equilibriumdescribed by the equation N2O4(g)↔
Vilka [71]

Answer : The correct option is, (C) 1.1

Solution :  Given,

Initial moles of N_2O_4 = 1.0 mole

Initial volume of solution = 1.0 L

First we have to calculate the concentration N_2O_4.

\text{Concentration of }N_2O_4=\frac{\text{Moles of }N_2O_4}{\text{Volume of solution}}

\text{Concentration of }N_2O_4=\frac{1.0moles}{1.0L}=1.0M

The given equilibrium reaction is,

                           N_2O_4(g)\rightleftharpoons 2NO_2(g)

Initially                      c                 0

At equilibrium   (c-c\alpha)           2c\alpha

The expression of K_c will be,

K_c=\frac{[NO_2]^2}{[N_2O_4]}

K_c=\frac{(2c\alpha)^2}{(c-c\alpha)}

where,

\alpha = degree of dissociation = 40 % = 0.4

Now put all the given values in the above expression, we get:

K_c=\frac{(2c\alpha)^2}{(c-c\alpha)}

K_c=\frac{(2\times 1\times 0.4)^2}{(1-1\times 0.4)}

K_c=1.066\aprrox 1.1

Therefore, the value of equilibrium constant for this reaction is, 1.1

4 0
3 years ago
What system was put into place in 1965 to help people be prepared for future tornados? WILL GIVE BRAINLIEST AND THANKS
Maslowich

Answer:

Eas and NOAA is that system

3 0
3 years ago
Other questions:
  • Can someone plz help. <br> Define solubility
    12·1 answer
  • Nucleophilicity is a kinetic property. A higher nucleophilicity indicates that the nucleophile will easily donate its electrons
    8·1 answer
  • Which inorganic substance taken up by plants is also taken in and used directly by animals, including humans?
    11·2 answers
  • How did Mendeleev organize the elements to create a periodic table?
    14·1 answer
  • Which of the following is the best definition of half-life for a radioactive substance?
    7·2 answers
  • Which is an example of a physical change?
    13·2 answers
  • Part 1: Fill in the blank<br> Newton’s Second Law: Unbalanced forces cause an object to ______.
    11·2 answers
  • What is the degree of lightness or darkness of a material is called its
    8·1 answer
  • Fran finds a dark-colored rock that she identifies as basalt. Which property gives the rock its dark color?
    9·1 answer
  • I need a chemistry questions about separating method
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!