1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Marina CMI [18]
3 years ago
14

What is 28 division 4

Mathematics
2 answers:
Morgarella [4.7K]3 years ago
8 0

Answer:

7

Step-by-step explanation:

frosja888 [35]3 years ago
8 0

Answer:

7

Step-by-step explanation:

28 / 4 = 7

You might be interested in
Simon can see two lights, light A and light B.
xz_007 [3.2K]

Answer:

2 Times

Step-by-step explanation:

Simon can see two lights A and B

  • Light A flashes every 15 seconds.
  • Light B flashes every 18 seconds.

First, we determine the next time both lights will flash together.

This is done by finding the Least Common Multiple of 15 and 18.

15=3X5

18=2X3^2

LCM of 15 and 18=2X3^2X5=90

This means that lights A and B will first flash together after 90 seconds.

Now, 240/90=2.\overline{6} seconds

Therefore, the number of times more both light will flash together in the next 4 Minutes= 2 Times

3 0
3 years ago
Write at least 2 numerical expressions for each written phrase below. Then, solve.
zloy xaker [14]

Answer:

a. \frac{3}{5}(7)\text{ or }\frac{3\times 7}{5}

b. \frac{1}{6}(4\times 8)\text{ or }\frac{4\times 8}{6}

Step-by-step explanation:

In numerical expressions we write numbers with the mathematical symbols (  i.e. '+', '-' etc )

a. Given phrase,

Three fifths of seven,

\frac{3}{5}(7)

=\frac{3\times 7}{5}

=\frac{21}{5}

=4\frac{1}{5}

b. One sixth the product of four and eight,

\frac{1}{6}(4\times 8)

=\frac{4\times 8}{6}

=\frac{32}{6}

=5\frac{1}{3}

7 0
3 years ago
Math math help ASAP
tiny-mole [99]

Answer:

103.67 in³

Step-by-step explanation:

given Volume of cone is 1/3 * π * r² * h

here given r = 6/2 = 3 , height = 11 inch

using the formula = 1/3 * π * 3² * 11

                              =103.67 in³ or 33π in³

7 0
2 years ago
Read 2 more answers
If <img src="https://tex.z-dn.net/?f=%5Cmathrm%20%7By%20%3D%20%28x%20%2B%20%5Csqrt%7B1%2Bx%5E%7B2%7D%7D%29%5E%7Bm%7D%7D" id="Tex
Harman [31]

Answer:

See below for proof.

Step-by-step explanation:

<u>Given</u>:

y=\left(x+\sqrt{1+x^2}\right)^m

<u>First derivative</u>

\boxed{\begin{minipage}{5.4 cm}\underline{Chain Rule for Differentiation}\\\\If  $f(g(x))$ then:\\\\$\dfrac{\text{d}y}{\text{d}x}=f'(g(x))\:g'(x)$\\\end{minipage}}

<u />

<u />\boxed{\begin{minipage}{5 cm}\underline{Differentiating $x^n$}\\\\If  $y=x^n$, then $\dfrac{\text{d}y}{\text{d}x}=xn^{n-1}$\\\end{minipage}}

<u />

\begin{aligned} y_1=\dfrac{\text{d}y}{\text{d}x} & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{2x}{2\sqrt{1+x^2}} \right)\\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(1+\dfrac{x}{\sqrt{1+x^2}} \right) \\\\ & =m\left(x+\sqrt{1+x^2}\right)^{m-1} \cdot \left(\dfrac{x+\sqrt{1+x^2}}{\sqrt{1+x^2}} \right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^{m-1}  \cdot \left(x+\sqrt{1+x^2}\right)\\\\ & = \dfrac{m}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m\end{aligned}

<u>Second derivative</u>

<u />

\boxed{\begin{minipage}{5.5 cm}\underline{Product Rule for Differentiation}\\\\If  $y=uv$  then:\\\\$\dfrac{\text{d}y}{\text{d}x}=u\dfrac{\text{d}v}{\text{d}x}+v\dfrac{\text{d}u}{\text{d}x}$\\\end{minipage}}

\textsf{Let }u=\dfrac{m}{\sqrt{1+x^2}}

\implies \dfrac{\text{d}u}{\text{d}x}=-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}

\textsf{Let }v=\left(x+\sqrt{1+x^2}\right)^m

\implies \dfrac{\text{d}v}{\text{d}x}=\dfrac{m}{\sqrt{1+x^2}} \cdot \left(x+\sqrt{1+x^2}\right)^m

\begin{aligned}y_2=\dfrac{\text{d}^2y}{\text{d}x^2}&=\dfrac{m}{\sqrt{1+x^2}}\cdot\dfrac{m}{\sqrt{1+x^2}}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)^\frac{3}{2}}\\\\&=\dfrac{m^2}{1+x^2}\cdot\left(x+\sqrt{1+x^2}\right)^m+\left(x+\sqrt{1+x^2}\right)^m\cdot-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\\\\ &=\left(x+\sqrt{1+x^2}\right)^m\left(\dfrac{m^2}{1+x^2}-\dfrac{mx}{\left(1+x^2\right)\sqrt{1+x^2}}\right)\\\\\end{aligned}

              = \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\right)\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)

<u>Proof</u>

  (x^2+1)y_2+xy_1-m^2y

= (x^2+1) \dfrac{\left(x+\sqrt{1+x^2}\right)^m}{1+x^2}\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left(m^2-\dfrac{mx}{\sqrt{1+x^2}}\right)+\dfrac{mx}{\sqrt{1+x^2}}\left(x+\sqrt{1+x^2}\right)^m-m^2\left(x+\sqrt{1+x^2\right)^m

= \left(x+\sqrt{1+x^2}\right)^m\left[m^2-\dfrac{mx}{\sqrt{1+x^2}}+\dfrac{mx}{\sqrt{1+x^2}}-m^2\right]

= \left(x+\sqrt{1+x^2}\right)^m\left[0]

= 0

8 0
1 year ago
11 8/7 ​ +3 5/1 ​ − ? = 15 PLZ I NEED IT FASTER THAN FAST
lukranit [14]

Answer:

5 1/7 or 36/7

Step-by-step explanation:

11 8/7+3 5/1-x=15

12 1/7+8-x=15

12 1/7+8-15=x

20 1/7-15=x

5 1/7=x

8 0
3 years ago
Other questions:
  • How do you find the midpoint of a line segment
    13·2 answers
  • You need to form a 10-inch by 15-inch piece of tin into a box (with no top) by cutting a square from each corner and folding up
    9·1 answer
  • The length of a rectangular patio is 14 feet more than its width, 2w. The area of a patio, A(w), can be represented by the funct
    14·1 answer
  • In a bag of small balls 1/4 are green, 1/8 are blue, 1/12 are yellow and the remaining 26 white. How many balls are blue?
    10·1 answer
  • There are 4 Board of Directors positions open. 2 will be for men, 2 will be for women.
    14·1 answer
  • A line that passes through the origin also passes through the point (6,2). What is the slope of the line?
    12·1 answer
  • I just need some help on number 7
    13·1 answer
  • What is the cube of the square of the second smallest prime number?
    7·1 answer
  • cylinder shaped pitcher diameter 12 cm height 25 cm. volume of juice in pitcher when its 25% full? 3.14 to approximate pi
    10·1 answer
  • Refer to the solution to Exercise 9.3.11 to answer the following questions. (a) How many ways can the letters of the word MINUTE
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!