Kepler did not study the speed of the planets, rather, he studied how the planets move in the solar system. He proposed three laws. As a summary, he described that the planets move around the sun in the shape of an ellipse (orbit), and the Sun being one of the foci. Then, he proposed the period for the planet to complete one revolution around the Sun.
On the other hand, Newton studied the forces acting on the planet (or any object in space) that explain how the planets move around the solar system as described by Kepler. Also, Kepler's observations only apply to planets and not the moons or satellites. Thus, Kepler only made laws from observations, while Newton based it from underlying principles that led him to mathematical equations such as the law of universal gravitation.
Answer:
Several principal emissions result from coal combustion: Sulfur dioxide (SO2), which contributes to acid rain and respiratory illnesses.
Explanation:
<h3><em>
hehe.</em></h3>
Answer:
6L
Explanation:
<em>if it's 3L per 200kPa</em>
then it would be;
4L per 300kPa
5L per 400kPa
6L per 500kPa
that's how i'd work it out in my head, hope it helps, but not sure though!
Answer:
Considering the half-life of 10,000 years, after 20,000 years we will have a fourth of the remaining amount.
Explanation:
The half-time is the time a radioisotope takes to decay and lose half of its mass. Therefore, we can make the following scheme to know the amount remaining after a period of time:
Time_________________ Amount
t=0_____________________x
t=10,000 years____________x/2
t=20,000 years___________x/4
During the first 10,000 years the radioisotope lost half of its mass. After 10,000 years more (which means 2 half-lives), the remaining amount also lost half of its mass. Therefore, after 20,000 years, the we will have a fourth of the initial amount.
i love math but sadly i am dumb