Answer:
28.20 mL of the stock solution.
Explanation:
Data obtained from the question include the following:
Molarity of stock solution (M1) = 12.1 M
Volume of diluted solution (V2) = 350.0 mL
Molarity of diluted solution (M2) = 0.975 M
Volume of stock solution needed (V1) =..?
The volume of stock solution needed can be obtained by using the dilution formula as shown below:
M1V1 = M2V2
12.1 x V1 = 0.975 x 350
Divide both side by 12.1
V1 = (0.975 x 350)/12.1
V1 = 28.20 mL.
Therefore, 28.20 mL of the stock solution will be needed to prepare 350.0 mL of 0.975 M HCl solution.
Answer:
C.
The pan will be the same temperature as the stove.
Explanation:
Answer:
(A) 0.129 M
(B) 0.237 M
Explanation:
(A) The reaction between potassium hydrogen phthalate and barium hydroxide is:
- 2HA + Ba(OH)₂ → BaA₂ + 2H₂O
Where A⁻ is the respective anion of the monoprotic acid (KC₈H₄O₄⁻).
We <u>convert mass of phthalate to moles</u>, using its molar mass:
- 0.978 g ÷ 156 g/mol = 9.27x10⁻³ mol = 9.27 mmol
Now we <u>convert mmol of HA to mmol of Ba(OH)₂</u>:
- 9.27 mmol HA *
= 6.64 mmol Ba(OH)₂
Finally we calculate the molarity of the Ba(OH)₂ solution:
- 6.64 mmol / 35.8 mL = 0.129 M
(B) The reaction between Ba(OH)₂ and HCl is:
- 2HCl + Ba(OH)₂ → BaCl₂ + 2H₂O
So<u> the moles of HCl that reacted </u>are:
- 17.1 mL * 0.129 M *
= 4.41 mmol HCl
And the <u>molarity of the HCl solution is</u>:
- 4.41 mmol / 18.6 mL = 0.237 M
1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
<h3>What is an ideal gas equation?</h3>
The ideal gas equation, pV = nRT, is an equation used to calculate either the pressure, volume, temperature or number of moles of a gas. The terms are: p = pressure, in pascals (Pa). V = volume, in
.
We apply the formula of the ideal gases, we clear n (number of moles); we use the ideal gas constant R = 0.082 l atm / K mol:
PV= nRT
Given data:
P=100.0 kPa =0.986923 atm
T=100 degree celcius= 100 + 273 =373 K
V=35.5 L
Substituting the values in the equation.
n= 
n= 1.137448506 mol
Hence, 1.137448506 mol moles of chlorine gas would occupy a volume of 35.5 L at a pressure of 100.0 kPa and a temperature of 100.0 degrees Celsius.
Learn more about ideal gas here:
brainly.com/question/16552394
#SPJ1
Answer:
scientists often communicate their research results in three general ways:
1) One is to publish their results in peer-reviewed journals that can be ready by other scientists.
2) Two is to present their results at national and international conferences where other scientists can listen to presentations
Explanation: