Let's begin with the basic values that will be used in the solution.
The formula of propane is C3H8. It is an alkane, a hydrocarbon with the general formula of CnH2n+2. Notice that hydrocarbons have only Carbon and Hydrogen atoms. Its molar mass (M) is 44 g.
Molar Mass Calculation is done as like that
C=12 g/mol, H=1 g/mol. 1 mole propane has 3 moles Carbon atoms and 8 mole Hydrogen atoms. M(C3H8)= 3*12+ 8*1= 44 g
Combustion reaction of hydrocarbons gives carbon dioxide and water by releasing energy. That energy is called as enthalpy of combustion (ΔHc°).
ΔHc° of propane equals -2202.0 kj/mol. Burning of 1 mole C3H8 releases 2202 kj energy. Minus sign only indicates that the energy is given out ( an exothermic reaction ).
Let's write the combustion reaction.
C3H8 + O2 ---> CO2 + H20 (unbalanced) ΔHc° = -2202 kj/mol
Now, we calculate mole of 20 kg propane. Convert kilogram into gram since we use molar mass is defined in grams.
mole=mass/molar mass ; n=m/M ; n= 20000 g /44 (g/mol)=454 mole
1 mole propane releases 2202 kj energy.
454 mole propane release 2202 kj *454= 1000909 kj
The answer is 1000909 kj.
Moving from Ethanol through Propanol to Butanol the physical properties like boiling points, surface tension and viscosity increases because of the increases in intermolecular interactions between the molecules of given compounds.
Explanation:
Ethanol, propanol and butanol all have hydroxyl groups in common, means all have hydrogen bond intractions between their molecules. So, taking the hydrogen bonding interaction constant we are left with only the difference in the number of carbon atoms.
Butanol has the greatest physical properties than other two because it has four carbon atom chain. So, as we know the London Dispersion forces or Van der Waal forces increases with increase in molecular size and chain length of hydrocarbon.
Therefore, the strength of London forces is greater in butanol than other two while ethanol has the smallest chain comparatively hence, lowest physical properties.
Of the gases listed, nitrogen, oxygen, water vapor, carbon dioxide, methane, nitrous oxide, and ozone are extremely important to the health of the Earth's biosphere. The table indicates that nitrogen and oxygen are the main components of the atmosphere by volume.
so the answer is D. Nitrogen and oxygen
hope this helps!
Answer: 1.46moles
Explanation:
Applying PV= nRT
P= 1atm, V= 32.6L, R= 0.082, T = 273K
Substitute and simplify
1×32.6/(0.082×273)=n
n= 1.46moles
Answer:
5 moles of Fe
Explanation:
The equation of the reaction is;
2 Al(s) + Fe 2O 3(s) --> 2Fe (s) + Al 2O 3 (s)
Now;
1 mole of Fe2O3 require 2 moles of Al
3 moles of Fe2O3 requires 3 × 2/1 = 6 moles of Al
Hence Al is the limiting reactant.
If 2 moles of Al yields 2 moles of Fe
5 moles of Al yields 5 × 2/2 = 5 moles of Fe