Answer:
0.00032 Grams of NaCl per 1 gram of the solution
Explanation:
Answer:
Initial concentration of HI is 5 mol/L.
The concentration of HI after is 0.00345 mol/L.
Explanation:
Rate Law:
Rate constant of the reaction = k =
Order of the reaction = 2
Initial rate of reaction =
Initial concentration of HI =
Final concentration of HI after t = [A]
t =
Integrated rate law for second order kinetics is given by:
The concentration of HI after is 0.00345 mol/L.
Answer: Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + 2H2O(l)
Explanation:
Since this is a neutralization reaction, the end product would be salt and water. In this equation Calcium will displace hydrogen from the acid because it is more reactive, resulting in the formation of CaSO4 (salt), while the displaced H2 molecule combines with OH molecules to form water.
The equation of the reaction is thus;
Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + H2O(l), in other to balance it, we add ''2'' to the water molecule in the right hand side of the equation.
Balance equation is
Ca(OH)2 (aq) + H2SO4 (aq) ----------> CaSO4(aq) + 2H2O(l)
The presence of oxidizing acids; heavy-metal salts, sulfur, and ammonia; and a number of sulfur and ammonia compounds can cause corrosion to set in. Water that comes from a well is much more likely to contain these materials and put copper lines in jeopardy—but it can occur in the civic water system as well.
Copper corrodes at insignificant rates when used in areas with unpolluted air, non-oxidizing acids, and water. However, it happens more rapidly with the presence of road salt, ammonia, sulfur, oxidizing acids
Acidic substances react with the surface of copper, causing it to tarnish and corrode almost instantly. This corrosion is highly soluble, leading to the presence of toxic copper salts in the food. This is why it is not recommended to use copper vessels for foods high in acidity, such as milk, wine, or vinegar.