The answer to this ? is true
——>Ba+AlCl2
—->3Ba+2AlCl3 to balance the equation
Answer: The concentration of the OH-, CB = 0.473 M.
Explanation:
The balanced equation of reaction is:
2HCl + Ca(OH)2 ===> CaCl2 + 2H2O
Using titration equation of formula
CAVA/CBVB = NA/NB
Where NA is the number of mole of acid = 2 (from the balanced equation of reaction)
NB is the number of mole of base = 1 (from the balanced equation of reaction)
CA is the concentration of acid = 1M
CB is the concentration of base = to be calculated
VA is the volume of acid = 23.65 ml
VB is the volume of base = 25mL
Substituting
1×23.65/CB×25 = 2/1
Therefore CB =1×23.65×1/25×2
CB = 0.473 M.
<h2>Answer:</h2>

<h2>Explanations</h2>
The complete balanced equation for the given reaction is expressed as;

Given the following parameters
Mass of CH4 = 5.90×10^−3 g = 0.0059grams
Determine the moles of methane

According to stoichimetry, 1 mole of methane produces 2 moles of water, hence the moles of water required will be:

Determine the mass of water produced

Therefore the mass of water produced from the complete combustion of 5.90×10−3 g of methane is 1.33 * 10^-2grams