To answer this question, you need to convert the gallon unit into liter. For every gallon of milk, there would be 3.78541 liters of milk. Then, the calculation would be: 334 gallon x 3.78541liter/gallon= 1264.32 liters.
If you make it into scientific notation then it would be 1.26 x 10^3
So the acceleration has actually slowed down the ball because it was going in the direction opposite the velocity. Now see what happens as the ball falls back down to Earth. The ball has zero velocity, but the acceleration due to gravity accelerates the ball downward at a rate of –9.8 m/s2.
hope it helps
Answer:
Reversible reactions exhibit the same reaction rate for forward and reverse reactions at equilibrium.
Reversible reactions exhibit constant concentrations of reactants and products at equilibrium
Explanation:
A reversible reaction is a reaction that can proceed in both forward and backward direction.
Equilibrium is attained in a chemical system when there is no observable change in the properties of the system.
At equilibrium, a reversible reaction is occurring in at same rate. That is, the forward and backward reaction is occurring at the same rate. As the rate of the forward and backward reaction remains the same, the concentrations of the reactants and products will also be the same in order for the equilibrium to be maintained.
Answer:

Explanation:
SO in order to calculate the specific latent heat of fusion, you need to remember the formula:

Where
representes the specific latent heart of fusion.
represents the heat energy added, usually represented in kJ
represents the mass of the object, in kg.
Now that we have our formula we just have to put our values into the formula:



SO our answer would be 
Microwaves are defined as electromagnetic radiations with a frequency ranging between 300 MHz to 300 GHz while the wavelength ranges from 1 mm to around 30 cm. The microwave radiation is commonly referred to as microwaves. They fall between the infrared radiation and radio waves in the electromagnetic spectrum. radio waves in the electromagnetic spectrum.