Answer:
Q = 2647 J
Explanation:
Specific heat capacity is the amount of energy required by one Kg of a substance to raise its temperature by 1 °C.
In thermodynamics the equation used is as follow,
Q = m Cp ΔT
Where;
Q = Heat = ?
m = mass = 660 g
Cp = Specific Heat Capacity = 0.3850 J.g⁻¹.°C⁻¹
ΔT = Change in Temperature = 23.35 °C - 12.93 °C = 10.42 °C
Putting values in eq. 1,
Q = 660 g × 0.3850 J.g⁻¹.°C⁻¹ × 10.42 °C
Q = 2647 J
Find the number of moles
C = n / V
C(Concentration) = 0.30 moles / L
V ( Volume) = 2 L
n = ??
n = C * V
n = 0.30 mol / L * 2 L
n = 0.60 mol
Find the molar mass
2Na = 23 * 2 = 46 grams
1S = 32 * 1 = 32 grams
O4 = 16 * 4 = 64 grams
Total = 142 grams / mol
Find the mass
n = given mass / molar mass
n = 0.06 mol
molar Mass = 142 grams / mol
given mass = ???
given mass = molar mass * mols
given mass = 142 * 0.6
given mass = 85.2 grams.
85.2 are in a 2 L solution that has a concentration of 0.6 mol/L
An element or compound will react with oxygen and will produce carbon dioxide, water, and sometimes carbon (if it is an incomplete combustion).