1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler [38]
3 years ago
8

What relationship between the sun and earth did copernicus formulate?

Physics
1 answer:
Dmitrij [34]3 years ago
5 0

Answer:

The astronomical model created and published by Nicholas Copernicus in the year 1543 is called Copernican heliocentrism. The model set the Sun in immobile position near the center of the solar system with Earth, as well as the other planets, spherical, epicycled and at consistent frequencies around it.

You might be interested in
Which of the view will show you a view<br>to the<br>very<br>Similar<br>Print View?​
sweet [91]
What are you talking about
3 0
2 years ago
Which of the following is an obstacle to creating computer-based models for tracking a hurricane?
iren [92.7K]

Answer:

4. All of the above I think, not to sure about 1. but the rest are right so im like 90.99999 percent sure good luck

5 0
3 years ago
The radius of a sphere is increasing at a rate of 4 mm/s. how fast is the volume increasing when the diameter is 40 mm?
marin [14]

Using <span>r </span> to represent the radius and <span>t </span> for time, you can write the first rate as:

<span><span><span><span>dr</span><span>dt</span></span>=4<span>mms</span></span> </span>

or

<span><span>r=r<span>(t)</span>=4t</span> </span>

The formula for a solid sphere's volume is:

<span><span>V=V<span>(r)</span>=<span>43</span>π<span>r3</span></span> </span>

When you take the derivative of both sides with respect to time...

<span><span><span><span>dV</span><span>dt</span></span>=<span>43</span>π<span>(3<span>r2</span>)</span><span>(<span><span>dr</span><span>dt</span></span>)</span></span> </span>

...remember the Chain Rule for implicit differentiation. The general format for this is:

<span><span><span><span><span>dV<span>(r)</span></span><span>dt</span></span>=<span><span>dV<span>(r)</span></span><span>dr<span>(t)</span></span></span>⋅<span><span>dr<span>(t)</span></span><span>dt</span></span></span> </span>with <span><span>V=V<span>(r)</span></span> </span> and <span><span>r=r<span>(t)</span></span> </span>.</span>

So, when you take the derivative of the volume, it is with respect to its variable <span>r </span> <span><span>(<span><span>dV<span>(r)</span></span><span>dr<span>(t)</span></span></span>)</span> </span>, but we want to do it with respect to <span>t </span> <span><span>(<span><span>dV<span>(r)</span></span><span>dt</span></span>)</span> </span>. Since <span><span>r=r<span>(t)</span></span> </span> and <span><span>r<span>(t)</span></span> </span> is implicitly a function of <span>t </span>, to make the equality work, you have to multiply by the derivative of the function <span><span>r<span>(t)</span></span> </span> with respect to <span>t </span> <span><span>(<span><span>dr<span>(t)</span></span><span>dt</span></span>)</span> </span>as well. That way, you're taking a derivative along a chain of functions, so to speak (<span><span>V→r→t</span> </span>).

Now what you can do is simply plug in what <span>r </span> is (note you were given diameter) and what <span><span><span>dr</span><span>dt</span></span> </span> is, because <span><span><span>dV</span><span>dt</span></span> </span> describes the rate of change of the volume over time, of a sphere.

<span><span><span><span><span>dV</span><span>dt</span></span>=<span>43</span>π<span>(3<span><span>(20mm)</span>2</span>)</span><span>(4<span>mms</span>)</span></span> </span><span><span>=6400π<span><span>mm3</span>s</span></span> </span></span>

Since time just increases, and the radius increases as a function of time, and the volume increases as a function of a constant times the radius cubed, the volume increases faster than the radius increases, so we can't just say the two rates are the same.

7 0
3 years ago
When the same masses are heated by the same amount, which of the following substances will heat up the slowest?
DochEvi [55]
When the same masses are heated by the same amount copper will heat up the fastest. Copper is a good conductor of heat that is why it easily heats up. Gold is not a good conductor of heat because of its stable properties.
8 0
3 years ago
Read 2 more answers
Consider the free-body diagram. If you want the box to move, the force applied while dragging must be greater than the
VLD [36.1K]

You would want it to be greater than D. friction force

It needs be greater than the friction applied to it.

6 0
3 years ago
Other questions:
  • Consider a 145 gram baseball being thrown by a pitcher. The ball approaches the batter with a speed of 44 m/s. The batter swings
    8·1 answer
  • Within the electron cloud there are different _______________ of electrons. A) types B) energy levels C) atomic masses D) electr
    6·2 answers
  • A rock hits the ground with a speed of 13 m s−1
    8·1 answer
  • How does mass effect my room?
    13·1 answer
  • A cube of side 6.50 cm is placed in a uniform field E = 7.50 × 10^3 N/C with edges parallel to the field lines (field enters the
    14·2 answers
  • A hockey puck sliding on the ice has ______.
    14·2 answers
  • The primary purpose of a switch in a circuit is to
    15·1 answer
  • A father (75 kg) was standing watching TV, minding his own business when one of his kids (20 kg) approached him at 2m/s heading
    15·1 answer
  • Liquid X of volume 0.5m3 and density 900kgm-3 was mixed with liquid Y of volume 0.4m3 and density 800kgm-3. What was the density
    6·1 answer
  • Which diagram best represents the relationship between these terms?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!