<span>sound waves are a type of wave sometimes called compression waves, vibrations with enough of an amplitude can compress and decompress the air adjacent to the object causing the waves to form.</span>
Answer:
Maximum height attained by the model rocket is 2172.87 m
Explanation:
Given,
- Initial speed of the model rocket = u = 0
- acceleration of the model rocket =

- time during the acceleration = t = 2.30 s
We have to consider the whole motion into two parts
In first part the rocket is moving with an acceleration of a = 85.0
for the time t = 2.30 s before the fuel abruptly runs out.
Let
be the height attained by the rocket during this time intervel,

And Final velocity at that point be v

Now, in second part, after reaching the altitude of 224.825 m the fuel abruptly runs out. Therefore rocket is moving upward under the effect of gravitational acceleration,
Let '
' be the altitude attained by the rocket to reach at the maximum point after the rocket's fuel runs out,
At that insitant,
- initial velocity of the rocket = v = 195.5 m/s.
- a =

- Final velocity of the rocket at the maximum altitude =

From the kinematics,

Hence the maximum altitude attained by the rocket from the ground is

During the time that the pencil is exerting 50N of force on the marble, the marble is exerting 50N of force in exactly the opposite direction on the pencil. <em>(D) </em>The mass of the marble doesn't matter, and it doesn't even matter whether the marble is moving or perfectly still.
As soon as the pencil stops exerting any force on the marble, the marble immediately stops exerting any force on the pencil.
Potential Energy=M x G x H
1,568=40 x 10 x H
Now we isolate the H
h=3.92m
I’m pretty sure point D cause North America is in the opposite direction of the sun