D - tertiary consumer
This is because it is the farther up to food chain.
Answer:
2a) x = 32 [mil/h]; 2b) t = 0.5[h]; 3a) t = 2.5 [h]; 3b) x = 185[mil]
Explanation:
2a)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 32 [\frac{mil}{h}] \\t=time = 1 [h]\\x=v*t\\x=32[\frac{mil}{h} ]*1[h]\\x=32[mil}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3Dvelocity%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%20%3D%2032%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%5D%20%5C%5Ct%3Dtime%20%3D%201%20%5Bh%5D%5C%5Cx%3Dv%2At%5C%5Cx%3D32%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%2A1%5Bh%5D%5C%5Cx%3D32%5Bmil%7D)
2b)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{420}{840}\\ t=0.5[h]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Ct%3D%5Cfrac%7Bx%7D%7Bv%7D%20%5C%5Ct%3D%5Cfrac%7B420%7D%7B840%7D%5C%5C%20t%3D0.5%5Bh%5D)
3a)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\t=\frac{x}{v} \\t=\frac{35}{14}\\ t=2.5[h]](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Ct%3D%5Cfrac%7Bx%7D%7Bv%7D%20%5C%5Ct%3D%5Cfrac%7B35%7D%7B14%7D%5C%5C%20t%3D2.5%5Bh%5D)
3b)
We can solve this problem by using the kinematics equation, which relates speed to time and displacement.
![v=\frac{x}{t} \\v=velocity [\frac{mil}{h} ] = 74 [\frac{mil}{h}] \\t=time = 2.5 [h]\\x=v*t\\x=74[\frac{mil}{h} ]*2.5[h]\\x=185[mil}](https://tex.z-dn.net/?f=v%3D%5Cfrac%7Bx%7D%7Bt%7D%20%5C%5Cv%3Dvelocity%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%20%3D%2074%20%5B%5Cfrac%7Bmil%7D%7Bh%7D%5D%20%5C%5Ct%3Dtime%20%3D%202.5%20%5Bh%5D%5C%5Cx%3Dv%2At%5C%5Cx%3D74%5B%5Cfrac%7Bmil%7D%7Bh%7D%20%5D%2A2.5%5Bh%5D%5C%5Cx%3D185%5Bmil%7D)
Answer:
the extension recorded by the student would be smaller than the actual extension of the spring
Answer:
it will disperse into many different colors
To solve this problem, we will apply the concepts related to Faraday's law that describes the behavior of the emf induced in the loop. Remember that this can be expressed as the product between the number of loops and the variation of the magnetic flux per unit of time. At the same time the magnetic flux through a loop of cross sectional area is,

Here,
= Angle between areal vector and magnetic field direction.
According to Faraday's law, induced emf in the loop is,





At time
, Induced emf is,


Therefore the magnitude of the induced emf is 10.9V