Answer:
567m
Explanation:
By using formula of velocity.
Pushing a broke down car, even done by more than one person, is difficult especially if the distance to be covered is quite far. A car is heavy and it requires a lot of force to start the car moving. This is because the inertia of the car to remain at rest is great. Additionally, the force applied in pushing the car must be greater than the frictional force to cause it to accelerate. The frictional force is dependent on the mass of the object which means that the frictional force acting on the car is also great. Finally, with every push of the car, the frictional force will always be present and acting on the opposite direction. The push that will be supplied must be sustained all throughout.
The answer is (A) the object must be at rest.
When all of the forces acting on an object balance, the net force is zero and hence the object will not move.
Yes, the direction might also change under some special circumstances.
Answer:2m/s²
Explanation: Well F=MA so sice F=4N and M=2kg let's plug in the values
4N=2KG*A
A=4N/2KG
A=2m/s²
Answer:
The resulting pressure is 3 times the initial pressure.
Explanation:
The equation of state for ideal gases is described below:
(1)
Where:
- Pressure.
- Volume.
- Molar quantity, in moles.
- Ideal gas constant.
- Temperature.
Given that ideal gas is compressed isothermally, this is, temperature remains constant, pressure is increased and volume is decreased, then we can simplify (1) into the following relationship:
(2)
If we know that
, then the resulting pressure of the system is:


The resulting pressure is 3 times the initial pressure.