Answer:
<em>Correct choice: b 4H</em>
Explanation:
<u>Conservation of the mechanical energy</u>
The mechanical energy is the sum of the gravitational potential energy GPE (U) and the kinetic energy KE (K):
E = U + K
The GPE is calculated as:
U = mgh
And the kinetic energy is:

Where:
m = mass of the object
g = gravitational acceleration
h = height of the object
v = speed at which the object moves
When the snowball is dropped from a height H, it has zero speed and therefore zero kinetic energy, thus the mechanical energy is:

When the snowball reaches the ground, the height is zero and the GPE is also zero, thus the mechanical energy is:

Since the energy is conserved, U1=U2
![\displaystyle mgH=\frac{1}{2}mv^2 \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%3D%5Cfrac%7B1%7D%7B2%7Dmv%5E2%20%20%20%20%5Cqquad%5Cqquad%20%5B1%5D)
For the speed to be double, we need to drop the snowball from a height H', and:

Operating:
![\displaystyle mgH'=4\frac{1}{2}m(v)^2 \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20mgH%27%3D4%5Cfrac%7B1%7D%7B2%7Dm%28v%29%5E2%20%5Cqquad%5Cqquad%20%5B2%5D)
Dividing [2] by [1]

Simplifying:

Thus:
H' = 4H
Correct choice: b 4H
Answer:
pressure= force/area
A solid resting on a horizontal surfaceexerts a normal contactforce equals to its weight. The pressure of the solid on the surface depends on the area of contact. (b) the area of contact between the two surfaces. The greater the force or the smaller the area the greater the pressure.
Following your push the ball rolls down the lane at 4.2m/s. What is the net force on the ball as it rolls down the lane at the constant speed?
FORCES HAVE STRENGTH AND DIRECTION
-B because metal hardly breaks but non metal items such as glass or plastic does!