Answer:
First option: 
Second option: 
Fourth option: 
Step-by-step explanation:
Rewrite each equation in the form
and then use the Discriminant formula for each equation. This is:

1) For
:

Then:
Since
this equation has no real solutions, but has two complex solutions.
2) For
:

Then:
Since
this equation has no real solutions, but has two complex solutions.
3) For
:

Then:
Since
this equation has one real solution.
4) For
:
Then:
Since
, this equation has no real solutions, but has two complex solutions.
Answer:
b) 1.383
d) 2733
f) 41.429
h) 6317
j) 87.889
Step-by-step explanation:
Answer:
In words the answer is between t=0 and t=2.
In interval notation the answer is (0,2)
In inequality notation the answer is 0<t<2
Big note: You should make sure the function I use what you meant.
Step-by-step explanation:
I hope the function is h(t)=-16t^2+32t because that is how I'm going to interpret it.
So if we can find when the ball is on the ground or has hit the ground (this is when h=0) then we can find when it is in the air which is between those 2 numbers.
0=-16t^2+32t
0=-16t(t-2)
So at t=0 and t=2
So the ball is in the air between t=0 and t=2
Interval notation (0,2)
Inequality notation 0<t<2
If the length of a rectangle is a two-digit number with identical digits and the width is 1/10 the length and the perimeter is 2 times the area of the rectangle, what is the the length and the width
Solution:
Let the length of rectangle=x
Width of rectangle=x/10
Perimeter is 2(Length+Width)
= 2(x+x/10)
Area of Rectangle= Length* Width=x*x/10
As, Perimeter=2(Area)
So,2(x+x/10)=2(x*x/10)
Multiplying the equation with 10, we get,
2(10x+x)=2x²
Adding Like terms, 10x+x=11x
2(11x)=2x^2
22x=2x²
2x²-22x=0
2x(x-11)=0
By Zero Product property, either x=0
or, x-11=0
or, x=11
So, Width=x/10=11/10=1.1
Checking:
So, Perimeter=2(Length +Width)=2(11+1.1)=2*(12.1)=24.2
Area=Length*Width=11*1.1=12.1
Hence, Perimeter= 2 Area
As,24.2=2*12.1=24.2
So, Perimeter=2 Area
So, Answer:Length of Rectangle=11 units
Width of Rectangle=1.1 units