Answer:
D. 12.4 m
Explanation:
Given that,
The initial velocity of the ball, u = 18 m/s
The angle at which the ball is projected, θ = 60°
The maximum height of the ball is given by the formula
h = u² sin²θ/2g m
Where,
g - acceleration due to gravity. (9.8 m/s)
Substituting the values in the above equation
h = 18² · sin²60 / 2 x 9.8
= 18² x 0.75 / 2 x 9.8
= 12.4 m
Hence, the maximum height of the ball attained, h = 12.4 m
It lasts 29 1/2 days.
-the sidereal month- is the true period of the moon's revolution around Earth. It lasts 27 1/3 days.
-the difference of 2 days between the synodic and sidereal cycles is due to the Earth- moon system also moving in an orbit around the sun.
V=(40km/hr)(hr/3600s)(1000000mm/km)
v=11111.1mm/s
v=d/t
d=vt
d=(11111.1mm/s)(5s)
d=55555mm
d=5.56x10^4mm
Well, it depends. Your latitude on Earth--that is, how close you are to the equator--and the time of year make a difference. I'll explain why. Your motion is made up of four pieces: the rotation of the Earth on its axis, the motion of the Earth around the Sun, the Sun's orbit about the center of the galaxy, and the motion of the whole galaxy.
Answer: The period of the pendulum will increase. Because of less gravity
Explanation:
Since the force of gravity is less on the Moon, the pendulum would swing slower at the same length and angle and its frequency would be less. Hence more time period will be experienced by the pendulum. On the moon, the acceleration due to gravity g is less when compared to that of the earth.