To solve this problem it is necessary to consider two concepts. The first of these is the flow rate that can be defined as the volumetric quantity that a channel travels in a given time. The flow rate can also be calculated from the Area and speed, that is,
Q = V*A
Where,
A= Cross-sectional Area
V = Velocity
The second concept related to the calculation of this problem is continuity, which is defined as the proportion that exists between the input channel and the output channel. It is understood as well as the geometric section of entry and exit, defined as,


Our values are given as,


Re-arrange the equation to find the first ratio of rates we have:



The second ratio of rates is



Answer:
Fc = 1.7x10^-4 N
Explanation:
Convert everything to proper units:
m = 25mg = 2.5x10^-5 kg
r = 17.6cm = 0.176m
v = 110cm/s = 1.1m/s
the formula for centripetal force is Fc = mv^2 / r
Plug everything and solve for Fc;
fc = (2.5x10^-5)(1.1^2) / 0.176
Fc = 1.7x10^-4 N
Answer:
5600N
Explanation:
Given parameters:
Mass of car = 700kg
Initial velocity = 10m/s
Final velocity = 30m/s
Displacement = 50m
Unknown:
Net force acting on the car = ?
Solution:
To find the force acting on a body, it is pertinent we know the mass and acceleration.
Force = mass x acceleration
Now;
Let us find the acceleration from the kinematics equations:
v² = u² + 2aS
v is the final velocity
u is the initial velocity
a is the acceleration
S is the distance
30² = 10² + (2 x a x 50)
900 = 100 + 100a
100a = 800
a = 8m/s²
Therefore;
Force = 700 x 8 = 5600N
Acceleration is the rate of change of velocity per unit of time.