All of the above as it states that "<span>a particle attracts every other particle in the universe using a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers"</span>
Answer:
796.18 Hz
Explanation:
Applying,
Maximum velocity = Amplitude×Angular velocity
Therefore,
V' = A(2πf)............... Equation 1
Where V' = maximum velocity of the eardrum, A = Amplitude of vibration of the eardrum, f = frequency of the eardrum vibration, π = pie
make f the subject of the equation
f = V'/2πA................ Equation 2
From the question,
Given: V' = 3.6×10⁻³ m/s, A' = 7.2×10⁻⁷ m,
Constant: 3.14.
Substitute these values into equation 2
f = 3.6×10⁻³/( 7.2×10⁻⁷×2×3.14)
f = 796.18 Hz
Hi there!
Angular momentum is equivalent to:

L = angular momentum (kgm²/s)
I = moment of inertia (kgm²)
ω = angular velocity (rad/sec)
Plug in the given values for moment of inertia and angular speed:

<span>If 1 eighth equals 1 billion 7 eighth equals 7 billion.
The asker of the second question needs a tutorial in radiometric dating. There is little likelihood that the daughter isotope has the same atomic weight as the parent isotope. To measure the mass isotopes doesn't tell us how many atoms of each exist. To get around that let's pretend — which will likely serve the purpose ineptly intended — that the values give an the particle ratio, 125:875.
The original parent isotope count was 125 + 875 = 1000. The remaining parent isotope is 125/1000 or 1/8. 1/8 = (1/2)^h, where h is the number of half-lives.
h = log (1/8) ÷ log(1/2) = 3
And 3 half-lives • 150,000 years/half-life = 450,000 years.</span>