Answer:
a. Both wires have the same resistivity
Explanation:
For the resistance of a wire , following formula holds good .
R = ρ l / S , R is resistance , l is length , S is cross sectional area and ρ is resistivity of the material that the wire is made of. Resistance is dependent on length and cross sectional area but resistivity does not depend upon length or cross sectional area . It only depends upon the type of material.
If we replace copper wire with aluminium wire , then resistivity will change .
Hence , since the wire remains made of copper , resistivity will not change.
Light from the stars, because the orbits make it difficult to see them.
Answer:
The leverage or mechanical advantage of pulleys is less obvious, but you can "gang" multiple pulleys together into two sets (blocks) and run the ropes back and forth between the two sets to increase the number of lengths of rope running between them. One end of the rope is connected (fixed) to one of the blocks, and you get to pull on the other end after it is passed back and forth between the blocks of pulleys. This is sometimes called a block and tackle arrangement. With a hook on each side of the block set, you can move a heavy load much like levers do, by multiplying the force. You have to pull more rope just like you have to move a lever more on one side of the fulcrum as compared to the other. When you get all the rope pulled out that you can, you can not move the load anymore because you have become "two-blocked" which means the two blocks are together. Credits to: Moin Khan
Explanation:
For the equilibrium:
\rho_{wood}gh-\rho_{oil}g(h-x)-\rho_{water}gx=0ρ
wood
gh−ρ
oil
g(h−x)−ρ
water
gx=0
\rho_{wood}h-\rho_{oil}(h-x)-\rho_{water}x=0ρ
wood
h−ρ
oil
(h−x)−ρ
water
x=0
(974)(3.97)-928(3.97-x)-1000x=0(974)(3.97)−928(3.97−x)−1000x=0
x=2.54\ cmx=2.54 cm